高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种沥青混合料多序列动态蠕变试验数据处理及分析方法
本发明公开了一种沥青混合料多序列动态蠕变试验数据处理及分析方法,通过设计一个巴特沃斯低通滤波器对试验测得的蠕变变形数据进行低通滤波,得到平滑的蠕变曲线,再分别计算每个加载序列的平均永久应变率,然后根据公式计算评价沥青混合料蠕变特性的三个指标:应变率敏感指数SRSI、复合平均永久应变率CAPSR、复合蠕变劲度模量CCSM:SRSI越大,意味着该应力状况对材料蠕变的影响越显著;CAPSR则代表了多种复杂应力状况下的等效应变率,该值越大,表明在材料在一次加载中产生的永久应变越大,材料的高温性能越差;CCSM代表了在蠕变试验结束时材料的抗永久变形能力的强弱,该值越大,证明材料的高温性能越好。
东南大学 2021-04-11
一种粒料煅烧回转窑产品余热环形间壁式回收系统及方法
(专利号:ZL 201510437312.3) 简介:本发明公开了一种粒料煅烧回转窑产品余热环形间壁式回收系统及方法,属于回转窑产品余热回收技术领域。本发明的回收系统,包括环形间壁换热机构和送风管换热机构。高温段罩体和中温段罩体均为两端开口的圆筒,高温段罩体和中温段罩体的内径均大于冷却筒的外径,高温段罩体套在所述高温段上,中温段罩体套在所述中温段上。送风管换热机构包括送风管,送风管包括送风管保温段和送风管加热段,送风管加热段设于冷却筒的内部,送风管加热段的出口端伸出冷却筒的进料口,送风管加热段的出口端通过管道与烧嘴的空气进口相连通。本发明实现了提高回转窑余热利用效率、减少冷却水消耗量、减少冷却设备被腐蚀的几率和改善操作环境的目标。
安徽工业大学 2021-04-11
一种粒料煅烧回转窑产品余热直吸式回收系统及方法
简介:本发明公开了一种粒料煅烧回转窑产品余热环形间壁式回收系统及方法,属于回转窑产品余热回收技术领域。本发明的回收系统,包括环形间壁换热机构和送风管换热机构。高温段罩体和中温段罩体均为两端开口的圆筒,高温段罩体和中温段罩体的内径均大于冷却筒的外径,高温段罩体套在所述高温段上,中温段罩体套在所述中温段上。送风管换热机构包括送风管,送风管包括送风管保温段和送风管加热段,送风管加热段设于冷却筒的内部,送风管加热段的出口端伸出冷却筒的进料口,送风管加热段的出口端通过管道与烧嘴的空气进口相连通。本发明实现了提高回转窑余热利用效率、减少冷却水消耗量、减少冷却设备被腐蚀的几率和改善操作环境的目标。  
安徽工业大学 2021-04-11
一种不脱模粒料基层沥青路面层间剪切试验装置
本实用新型公开了一种不脱模粒料基层沥青路面层间剪切试验装置,包括有试验模具、剪切装置、计算机,剪切装置由挡板、固定底板、滚轴、加载金属垫具、升降加载压头、传力杆、计算机构成,试验模具由上部结构、下部结构组成,上部结构与下部结构由长螺钉固定,层间剪切试验过程中采用不脱模的粒料基层沥青路面复合试件。本实用新型解决了粒料基层沥青路面层间剪切试验中成型难、脱模难的问题,可操作性强,适用范围广。
安徽建筑大学 2021-01-12
地面三维激光扫描技术与工程应用
本书概述了三维激光扫描技术的概念与原理,分类与特点,研究现状与应用领域,阐述了点云数据的获取方法与精度分析,简要介绍数据处理的主要流程与基于点云的三维建模方法等.
江苏海洋大学 2021-05-06
高速大口径激光能量测量仪
短脉冲激光器已经广泛应用于工业、军事等领域,但是随着使用次数、时间的变化以及激光器本身性能的波动,造成输出性能下降,更多地体现在能量的变化。这样,就会造成与其配套设备性能的下降,甚至无法工作。如远距离激光测距机因激光能量的下降,造成测量距离变短等。传统的激光能量计,测量口径小、速度慢,无法满足特定环境、设备的需求。
电子科技大学 2021-04-10
大功率复杂波形激光脉冲种子源
大功率复杂波形激光脉冲种子源主要用于产生高功率的复杂波形激光脉冲。在MOPA(Master Oscillator Power Amplifier)系统中的输出光脉冲,会因系统内部的多次光放大而带来波形劣化。克服该技术缺陷的主要手段是对种子光脉冲进行整形,以修正最终的高功率脉冲波形。这要求种子源系统输出的光脉冲能同时满足大功率和复杂波形。 MOPA系统主要应用于需要强激光脉冲的激光标记、材料加工、或其它特殊领域,大功率复杂波形激光脉冲种子源是提升输出激光脉冲质量的核心技术。
电子科技大学 2021-04-10
高性能超快激光精密微加工装备
几年,随着消费电子(手机、智能手表等)、生物医疗需求的快速发展,尤其是代表下一代柔性移动显示屏OLED的巨大应用市场驱动下,超快激光精密微加工产业在世界范围内迅速增长。与传统的纳秒长脉冲相比,脉宽小于15皮秒的超快激光器用于材料加工时,由于脉冲的持续时间短于材料的热弛豫时间,在加工过程中避免热效应,基本不带来附加损伤和毛刺,适合于微米乃至纳米精度的超精细冷加工。超快激光的瞬间功率极大,几乎可以和任何材料相互作用,因此适用于超快激光加工的材料范围几乎不受限制,尤其有优势的加工对象包括玻璃、蓝宝石、陶瓷、太阳能薄膜、半导体晶圆、特种合金、精密医疗器件等。
南京大学 2021-04-10
双波长可调谐掺铥光纤激光器
本发明公开了一种双波长可调谐掺铥光纤激光器,属激光器技术领域。由泵浦源、掺铥光纤、泵浦光聚焦透镜、分色镜、激光准直透镜、两个反射式体布拉格光栅(以下简称为VBG)和宽带介质膜高反镜组成。本发明利用两个VBG作为谐振腔端面反射元件,使两个VBG所对应的反射波长同时起振,利用体布拉格光栅反射波长随角度可调谐的特性,振荡的两个波长可分别独立在几十纳米的范围内进行调谐,其调谐范围的大小与VBG设计参数有关。本发明有益效果是:适用于高功率运行,且可进一步升级为多波长同时输出的激光器系统。
江苏师范大学 2021-04-11
激光驱动光子对撞机的新方案
北京大学物理学院颜学庆教授和卢海洋研究员领导的课题组提出了激光驱动光子对撞机的新方案,该方案每脉冲可以产生3亿个Breit-Wheeler事件,并且所产生的正负电子对发散角只有7度,具有非常好的准直性。同时,背景噪声可以得到有效抑制,信噪比高达1000:1。研究成果以 “Creation of electron-positron pairs in photon-photon collisions driven by 10-PW laser pulses”为题在线发表在《物理评论快报》(Physical Review Letters)。 根据爱因斯坦质能方程和量子电动力学理论,在一定条件下光子(能量)可以转化成物质,这对研究物质的起因有重要的作用。相关的理论研究始于上世纪30年代,直到1997年美国SLAC实验室才首次在实验中观测到多光子碰撞产生正负电子对的过程。然而,对于两个高能光子的互作用过程,也就是常说的光子对撞机,到目前为止还未能在实验中观测到。在光子对撞机中,光子的互作用的次数与光子数目和光子互作用截面成正比,与光子束的脉冲宽度、两束光子束的交叠面积成反比。在过去实验中不能观测到光子的互作用过程是因为已有伽马射线源的流强和亮度还达不到要求。 近年来,随着激光技术的发展,特别是10拍瓦(1拍瓦=1e15瓦)激光器的建成,激光光强将可以达到1e23W/cm3以上。当如此高强度的激光与物质相互作用时,大部分激光能量被吸收并转化成伽马射线辐射源,如果可以有效控制伽马射线的发散角,辐射的伽马射线将会达到前所未有的流强和亮度。 团队研究人员在前期的工作中对产生超高亮度伽马光源进行了深入的研究,首次从理论上系统阐明了微通道结构靶中,纵向电场主导了电子的加速过程,同时电子的横向加速可以得到有效的抑制,因此可以获得高准直性的电子束,当这些电子束在横向场中的相位发生反转时,电子就会在管道边界处产生强伽马辐射。由于电子的发散角决定了伽马辐射的发散角,因此可以获得准直性非常好的γ-ray辐射源。数值模拟中10PW激光所能获得的发散角小于3度,亮度比之前研究报道结果高出两个数量级的伽马辐射源。图1. 激光驱动光子对撞机产生正负电子对的方案设计图2. 本方案可以获得高出之前2-3量级的伽马光源亮度 本工作即基于以上研究成果,将该超高亮度的伽马射线应用于光子对撞机。理论计算结果表明,该方案可以获得超高信噪比(>1000:1),且每一发正负电子对信号(>1e8)远高于现有测量技术的探测极限。因此,通过该方案可以在实验室中验证光子互作用过程中由能量到物质的转换过程,将提供激光驱动光子对撞机研究的新途径,也将极大的促进双光子BW物理的发展。未来有望依据本方案建设基于重频拍瓦飞秒激光的高亮度伽马源及其应用装置。 北京大学物理学院博士后余金清为论文第一作者。颜学庆教授和卢海洋研究员为通讯作者。论文合作者还包括北京大学的陈佳洱院士、马文君研究员,広岛大学的T. Takahashi教授,高能物理所的黄永盛研究员。该研究工作得到国家自然科学基金、科技部重点研发专项、挑战计划和中国博士后科学基金的联合资助。相关模拟工作得到北京大学高性能计算平台的支持。相关文章链接:Phys. Rev. Lett. 122, 014802 (2019) https://doi.org/10.1103/PhysRevLett.122.014802Appl. Phys. Lett. 112, 204103 (2018) https://aip.scitation.org/doi/abs/10.1063/1.5030942
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 61 62 63
  • ...
  • 117 118 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1