高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
流动科技馆科普大篷车方案车载仪器龙卷风
科普大篷车通过与传统科普工作实现有机结合,丰富了传统科普工作的手段和形式,成为普及科学知识、弘扬科学精神、传播科学思想和方法的重要科普设施,促进了传统科普工作的创新。科普大篷车每到一地,都根据当地公众的需要开展丰富多彩的科普宣传活动,如展示农村实用技术和现代科学知识的科普展板、挂图,为农民发放农村实用技术和宣传科学文明健康生活方式的科普图、挂历、年画等科普资料,放映各类科教影片,邀请当地专家举办科普报告和农业实用技术讲座等。通过科普大篷车,实现了各项传统科普工作的有机整合,形成了集成效应,起到了单项科普工作难以起到的影响。 序号 品名 参数规格 单位 数量 合计 一、流动科技展品系列 每个产品铝合金箱包装箱体540X440X640 1 手蓄电池 规格:540X440X640 探究问题:探究蓄电池的工作原理 套 1 2 发电锚 规格:540X440X640 奇妙的大自然蕴藏着无穷无尽的能量:光能、电能、热能、机械能、化学能等等。这个产品,通过强磁铁切割线圈产生感应电流,点亮发光二极管,从而实现电磁和机械能;磁、电、光的有趣转化。 套 1 3 比腕力 规格:540X440X640 本展品用于演示杠杆原理,在杠杆运动中,受力臂与阻力臂之比越大,越省力。从古代的轱辘到现代的超重机,人们在生产和生活中利用各种杠杆技术在为自己服务。 套 1 4 风洞戏球 规格:540X440X640 探究问题:空气动力学 套 1 5 光井 规格:540X440X640 本仪器用于演示光的反射现象,通过本仪器可以了解光的反射在日常生活中的应用,如人们用的镜子,医生用的凹镜,汽车的后视镜等。 套 1 6 光压风车 规格:540X440X640 探究课题: 1、了解光具有能量和动量。 2、了解不同颜色的表面对光的吸收率不同。 3、了解太阳能的应用 套 1 7 声悬浮 规格:540X440X640 探究课题:声音在振动时由于波的干涉会产生驻波,空气介质在驻波点基本不动,每个筒状物体都有自己的多介固有频率,当筒状物体的尺寸确定后,固有频率即确定,当我们调整声源的频率,使声源的频率达到筒状物体的固有频率时,驻波出现在筒状物体的中部,同时产生水平方向的定位力,塑料球将悬浮在该点。 套 1 8 穿墙而过 规格:540X440X640, 当站在透明圆管前,由于偏振片的作用,因此无形中感觉到透明圆管内有“一面墙”存在,但是在把圆管倾斜以后,却看见乒乓球可以穿透墙,从一端滚动到另一端。 套 1 9 静电乒乓 规格:540X440X640 按下按钮开关, 静电加载到俩个特制乒乓球拍上,你会看见涂有金属的特制乒乓球在乒乓拍之间来回运动。 套 1 10 智能机器人 规格:540X440X640 展品演示的科学技术原理:它会唱歌、跳舞、智能对话、有炫目的灯光、仿真的声音、会摇摆的舞蹈、多套完整的舞蹈动作、还可以设定时间和闹钟,能报时,做游戏、能起步向前进和后退,可以迈步和滑行,头部可以左右摆动,手臂可以上下摆动,可以语音聊天,拜拜进入休眠状态,也可以自动进入休眠状态。 套 1 11 无规则摆锤 规格:540X440X640 解磁极间的相互作用影响单摆的运动。轻推摆锤,观看摆锤在磁力的影响下做无规则运动。 套 1 12 彩色旋转反射灯 规格:540X440X640 展品演示的科学技术原理: 上端有四根同样弯曲的有机玻璃棒。旋转的时候,将展品水平放置,在四根有机棒的同一个水平面上、同一位置各取一点,由于这四点,旋转时轨迹有个时间差,固然四根弯曲有机棒不会相互碰撞;有机棒内部,大小相同的有机棒内部有无数的气泡。底座下面的彩色光,通过这些气泡泡的无数次反射,将光反射至有机棒的各个位置,固形成一个美丽的彩色旋转反射灯。  套 1    南京师范大学课程资源研究所可提供的系列教育产品有:科技馆仪器、科普馆展品、科技创新实验室仪器、科学探究实验室仪器、数字化实验室探究仪器设备、通用技术实验室仪器模型、机器人实验室套件、航天航空科普馆仪器、航天航空科技馆展品、地震科普馆展品、地震科技馆仪器、安全教育科普馆展品、安全教育科技馆仪器、交通安全科普馆展品、交通安全科技馆模型、消防科普馆展品、消防科技馆仪器、幼儿园科学发现室仪器、农业科普馆展品、社区科普馆仪器、社区科技馆展品、壁挂式科技馆仪器、科普大篷车仪器、示范性综合实践基地配套仪器、综合实践活动室配套仪器、生命健康科普馆展品、低碳环保科普馆仪器模型、军事教育科普馆仪器模型、儿童乐园科普展品。 南京师范大学课程资源研究所 邮政编码:210009 地  址:南京市宁海路122号南京师范大学信息技术楼  公司电话:025-83301983,83204284,83302681 公司传真:025-83302681转8009 手  机:13705153115 联 系 人:肖老师 网  址:http://www.kczyyjs.com 电子邮件:wangkefang@163.com QQ号码:1984939447  
南京师范大学课程资源研究所 2021-08-23
基于激光散射的空气污染物微粒测量仪
近些年,工业发展导致环境污染越来越严重,其中粉尘作为环境 恶化的重要污染源,严重危害着我们的生活环境和人们的身心健康。 因此,采取及时有效的措施对环境中的粉尘浓度进行检测,然后进行 除尘降尘,可有效提高人生安全系数和环境质量。 目前,现有的粉尘检测设备中,所用的传感器稳定性差,致使测量 精度不够高,且校准调节难度大,这也对产品的推广和后期维护带来 不便。课题组采用激光散射法在线监测粉尘浓度,并采用 3D 打印技术 设计系统总体及光路结构,采用串口通讯模块对系统进行了数据校准 及稳定性分析,测量精准度高。
南开大学 2021-04-11
基于激光测振技术的建筑幕墙安全状态远程检测方法
建筑幕墙是由支承结构体系与面板组成的、可相对主体结构有一定位移能力、不分担主体结构所受作用的建筑外围结构或装饰性结构,包括玻璃幕墙、石材幕墙和合金幕墙等,并被广泛应用于高楼大厦、机场、高铁车站等公共设施。随着服役年限的增加,近些年来建筑幕墙因面板脱落造成的事故屡见不鲜,严重威胁着人们的生命财产安全。因此,建筑幕墙实施有效的检测是实现幕墙安全管理、预防灾害发生的重要前提。当前幕墙安全状态检测的手段主要有:目测法、手试法、振动传感器法等,目测法和手试法需要作业人员通过攀爬等手段靠近检测对象实施检测,且检测结果受检测人员个人经验影响较大。振动传感器法因传感器的安装困难、需要额外激振、附加质量也对检测结果影响较大等原因实际应用价值较小。 本项成果提供了一种基于激光测振技术的建筑幕墙安全状态的无损检测方法。该方法基于幕墙面板时常微动的特点进行幕墙安全状态检测,不需要提供额外激励,可远程、快速评价幕墙的安全状态,具有适用范围广、实用性强等特点。
北京科技大学 2021-02-01
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。 技术特征 面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。
南京航空航天大学 2021-05-11
航空航天轻合金大型复杂结构精准激光焊接技术
以大型薄壁结构双激光束双侧同步焊接(DLBSW)工艺与装备需求为牵引,开展高效激光焊接机理、技术、装备研究,突破了激光焊接微观热-力-冶金机理、形性一体化精准调控技术,形成了首套双激光束双侧同步焊接装备,完成了国内首个激光焊接火箭贮箱的研制。技术特征面向航空航天大型复杂曲面薄壁结构,提出了焊缝组织形态三维解构方法、面向微区缺陷与性能的组织形态重构与参数体系化设计方法;提出了智能化建模技术,形成了面向航空航天型号产品的虚拟焊接体系。应用范围:已有合作与成效:(1)与中国商飞合作,完成C919机身壁板结构DLBSW仿真研究与样件研制工作;(2)与上海航天技术研究院合作,将DLBSW技术应用于火箭燃料贮箱结构,成果完成了国内首个激光焊接火箭贮箱的研制工作;(3)与航天一院合作,开展新一代载人火箭贮箱箱底焊接变形控制研究。后续推广:为将来重型运载火箭、大型宽体客机、战略运输/轰炸机、下一代战斗机制造提供支持。
南京航空航天大学 2021-04-10
飞秒激光脉冲制备硅基微纳结构光伏材料
太阳能作为一种洁净和相对易于获取的能源在未来的动力产品中将占有越来越大的比份。如何发展高光电能量转换效率、高可靠性和低成本的太阳能电池是目前太阳能利用领域所面临的关键问题。相对于第一代和第二代太阳能电池(转换效率<<50%),各国科学家纷纷研究不同的应用于第三代太阳能电池的新材料和新结构,目标是使光电转换效率大于5 0%。近年来,一种具有微、纳米量级特殊结构的光伏材料成为太阳能电池的研究热点。利用飞秒脉冲激光在极短的持续时间内激发出极大的峰值能量,其在硅片的相互作用过程中具有很强的非线性效应,聚焦烧蚀硅表面很小的一块面积,形成规则排列的微纳米结构。这种微纳米结构由于表面积增大,对入射光波有很大的吸收,且对光的敏感性提高了数百倍,这些性质对我们提高光电转换效率具有很大的指导意义。这种材料与本底未处理材料的性质相比,材料带隙减小,对光的敏感性提高了数百倍,这使得其对波长为250—2500 nm的入射光波有大于90%的吸收;另外,黑硅比传统材质的硅的比重低。这些奇特的光电和物理性质能进一步提高太阳能电池的光电转换效率。根据光吸收效率,激子光量子效率,化学电势效率以及填充因子计算总的光电转换效率,普通硅基太阳能电池光电转换效率只有1 5%,而基于微纳结构光伏材料的太阳能电池转换效率可望达到50%-60%。 针对国民经济可持续发展在太阳能光伏技术方面的重大需求,发展利用超短脉冲激光制备具有优异光电转化效率的微纳结构光伏材料的新方法,以及通过探测光伏材料中非平衡载流子的能带结构及微分负电导等特性,探知光伏材料的光电转换效率,从而筛选出转换效率较高的微纳结构光伏材料,最终在发展新型、高效太阳能电池的新原理和新技术方面取得创新性突破,为我国研发具有自主知识产权的高效第三代光伏电池打下坚实基础。
上海理工大学 2021-04-11
在片上微纳激光器精确集成领域的研究
北京大学“极端光学创新研究团队”发展了一种高精度的暗场光学成像定位技术(位置不确定度仅21 nm),并结合电子束套刻工艺,实现了片上量子点微盘激光器与银纳米线表面等离激元波导的精确、并行、无损集成。这种微盘-银纳米线复合结构同时具有介质激光器与表面等离激元波导的优势,因此不仅具有介质激光器的低阈值与窄线宽特性,而且具有表面等离激元波导的深亚波长场束缚特性。基于这种灵活、可控的制备方法,他们实现了片上微盘激光器与表面等离激元波导间多种形式的精确可控集成,包括切向集成、径向集成以及复杂集成,并且对量子点无任何加工损伤;进一步,通过同时集成多个片上微盘激光器与多个银纳米线表面等离激元波导,他们获得了多模、单色单模以及双色单模的深亚波长(0.008λ2)相干输出光源。这些高性能的深亚波长相干输出光源可以容易地耦合并分配至其它深亚波长表面等离激元光子器件和回路中。因此,这种灵活、可控的精确集成方法在高集成密度的光子-表面等离激元复合光子回路中具有重要应用,并且这种方法可以拓展到其它材料和其它功能的微纳光子器件集成中,为未来光子芯片的实现提供了一种可行的解决方案。  该工作于2018年5月发表在Advanced Materials上(Advanced Materials 2018, 30, 1706546),并以卷首插画(Frontispiece)的形式予以重点报道。文章的第一作者为北京大学物理学院博士研究生容科秀,陈建军研究员为通讯作者。该研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、量子物质科学协同创新中心和极端光学协同创新中心等的支持。 图1. 片上胶体量子点微盘激光器与银纳米线表面等离激元波导的精确、并行、无损集成。
北京大学 2021-04-11
一种基于圆形扫描激光的轨线自动跟踪方法
本发明提供了一种基于圆形扫描激光的轨线自动跟踪方法,首先将圆形扫描激光投射到待测物体表面上,且圆形扫描激光与待跟踪轨线有两个或两个以上的交点,其中一个交点与待跟踪轨线的起点重合;将待跟踪轨线的起点标记为 P0,将圆形扫描激光与待跟踪轨线的最后一个交点标记为 P1;之后,令 i=2;将圆形扫描激光的圆心沿着直线 Pi-2Pi-1 的方向移动距离 si,将圆形扫描激光与待跟踪轨线的最后一个交点标记为 Pi,其中 si 为线段 P0P1 长度的 1/Ni,Ni∈[2,50];i 逐一递增,实现自动跟踪。本
华中科技大学 2021-01-12
一种使用共面倒 F 天线的激光全息 RFID 标签
本实用新型公开了一种激光全息RFID标签,包括RFID标签(50)和贴在其上的激光全息膜(10),其中,该 RFID 标签(50)包括共面倒 F 天线(510)、基板(520)和 RFID 芯片(530),所述共面倒 F 天线(510)制作在基板(520)上,所述 RFID 芯片(530)贴装在该共面倒 F 天线(510)上。本实用新型的激光全息 RFID 标签能够适用于超高频和微波频段,其中的激光全息膜可采用金属反射层或非金属反射层,形状和尺寸大小不受限制,与 RFID 标签的复合方法简单方便。
华中科技大学 2021-01-12
一种利用激光测量透镜曲率半径的方法及其装置
该研究成果基于发明专利 “ 一种利用激光测量透镜曲率半径的方法及其装置 ” (专利号: CN201010581799.X )。设计了一种利用激光测量透镜曲率半径的方法及测量装置,用该方法及相应的测量装置替代传统的钠光牛顿仪测量方法和装置,避免了待测平凸透镜的应力变形,解决了传统钠光牛顿环仪应力变形对测量精度的影响问题。装置相对于已有装置结构更为简单,经实验测试,测量重复性好,测量精度高。
西安科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 95 96 97
  • ...
  • 126 127 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1