高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
高效纤维
素
酶联合复合菌剂降解秸秆制肥在蔬菜种植中的应用
1、成果简介:(500字以内) 基于前期对纤维素降解起关键性作用的过程内切酶Cel48F水解中心关键氨基酸的优化结果,定制具有高效水解活性的纤维素酶,与复合菌剂联合使用,高效降解秸秆同时发酵制肥,突破交通运输秸秆距离的瓶颈,便于在农村蔬菜种植大范围推广及应用。项目提供秸秆降解发酵工艺流程,提供秸秆降解效率,肥料酸含量,pH等标准。 项目可试点推广秸秆制肥技术,应用在大棚蔬菜种植中,提高蔬菜质量及增产。项目建成后,秸秆的循环利用产生的有机质、矿物元素和抗病微生物,能够提供作
吉林大学
2021-04-14
一类呋喃香豆
素
类化合物作为抗乙型肝炎病毒(HBV)药物的应用
具有新颖的结构,可上调脂代谢相关蛋白ABCA1,是PDE5的强效抑制剂,具有开发成为抗心血管疾病如 本技术成果是以人类NF-κB DNA结合位点为药物设计靶点,通过计算机辅助药物筛选获得一系列 肺动脉高压,以及男性性功能障碍的治疗药物的潜力。 可能具有人类NF-κB抑制活性的化合物。在细胞水平对筛选获得的化合物进行抗HBV复制抑制实验, 发现其中一类高治疗指数的新型呋喃香豆素类化合物可以有效抑制HBV DNA复制,减少HBV表面抗原 (HBsAg)、HBV e抗原(HBeAg)分泌。此类呋喃香豆素类化合物可用于治疗HBV感染引起的肝炎,有 望进一步开发为一种抗乙型肝炎病毒(HBV)药物。FDA批准上市的5个抗HBV NAs药物,均已出现耐药病 毒株,且出现交叉耐药现象。
中山大学
2021-04-10
一种石榴皮鞣
素
在制备治疗或预防丙型肝炎病毒感染药物中的应用
已有样品/n新型治疗或预防丙型肝炎药物:本成果发明了一种石榴皮鞣素(小分子化合物)在制备治疗或预防丙型肝炎病毒感染药物中的应用。石榴皮鞣素可以阻碍HCV吸附和侵入到靶细胞,从而抑制HCV的进入和再感染。同时,该化合物还能显著降低HCVNS3丝氨酸蛋白酶活性。因此,通过单独使用或者与其它抗HCV药物联合使用,石榴皮鞣素能够在预防或者治疗丙型肝炎病毒感染过程中发挥重要作用。该专利为制备治疗或预防丙型肝炎药物提供新的药物。
中国科学院大学
2021-01-12
一种基于双阳极的单室电芬顿矿化抗生
素
的装置和方法
本发明公开一种基于双阳极的单室电芬顿矿化抗生素的装置和方法,装置中单室内依次设置空气阴极、第一阳极和第二阳极,电解液中含有抗生素,第一阳极包括产电生物膜和原位合成的纳米FeS,第二阳极包括典型抗生素降解中间体的降解生物膜,空气阴极表面涂有氧还原催化剂。本发明以第一阳极驱动Fe(III)/Fe(II)循环,加速•OH生成,同时利用纳米FeS保护细胞免受损伤,从而提升抗生素降解效率并促进中间体生成;以第二阳极促使阳极生物降解与阴极化学氧化偶联,快速矿化中间体并释放电子驱动阴极电芬顿反应,最终实现抗生素的彻底矿化。本发明的装置和方法,可实现抗生素废水的高效绿色低碳处理,在环境保护以及资源利用方面有重要的应用前景。
南京工业大学
2021-01-12
用于检测β-胡萝卜
素
类色素的单克隆抗体及酶联免疫技术与试剂盒
该项目研制的酶联免疫检测技术包括免疫原、包被原、抗体的制备以及样品的处理和检测等步骤。能一次性测出样品中斑蝥黄、β-胡萝卜素、β-阿朴-8’-胡萝卜素醛、叶黄素、辣椒红素、β-紫罗酮酸的总含量,缩短了检测时间,降低了检测成本,同时具有检测灵敏度高、精密度好、准确性好的特点。 该项目缩短了检测时间,降低了检测成本,同时具有检测灵敏度高、精密度好、准确性好的特点。 成果完成时间:2013年
华中农业大学
2021-01-12
天津大学研发“环境友好型”DNA
生物
塑料
近日,天津大学仰大勇教授团队联合中石油石化研究院成功研发新型DNA生物塑料,这种塑料原料来源丰富,生产、使用和回收处理全过程均与生态环境友好兼容,且可以低能耗无损回收,有望在部分应用领域替代石油基塑料。该成果已发表于领域权威期刊《美国化学会志》。
天津大学
2021-12-01
中国科大研制各向同性全
生物
质仿生木材
近日,中国科学技术大学俞书宏院士团队通过深入解析生物质微观结构,提出了一种利用生物质天然纳米结构的全新的生物质表面纳米化策略,基于这种策略构筑了一种可持续新型各向同性仿生木材(“RGI-wood”)。该策略巧妙地利用了木屑等生物质中天然的纤维素纳米纤维,将其暴露在木屑颗粒表面,并使其互相交联从而构筑无需任何粘合剂的高性能人造木材。运用这种策略所制备的人造木材在各方向上具有相同的力学强度,且超越了实木材和传统人造板。这种新型人造木材自下而上的制备方式使其在尺寸上将不受限制,可以克服大块实木材料的稀缺性,大大拓宽了这类木质材料的应用范围。另外,其还表现出优异的阻燃性性和防水性。在这种高性能人造木材中,微米级木屑颗粒的暴露着大量的纳米尺度的纤维素纤维,这些纳米纤维通过离子键、氢键、范德华力以及物理纠缠等相互作用结合在一起,微米级的木屑颗粒也被这些互相缠绕的纳米纤维网络紧密地结合一起形成高强度的致密结构,而无需添加任何粘结剂。这种结构特征带来了高达170 MPa的各向同性抗弯强度和约10 GPa的弯曲模量,远超天然实木的力学强度。此外,新型人造木材还显示出优异的断裂韧性,极限抗压强度,硬度,抗冲击性,尺寸稳定性以及优于天然木材的阻燃性。作为一种全生物基的环保材料,新型人造木材不仅不含任何粘结剂,还具有远超树脂基材料和传统塑料的力学性能,因此具有非常广泛的应用前景。 此外,这种由纳米纤维构成的网络也为制备木基纳米复合材料提供了一种新途径。通过将碳纳米管(CNT)掺入木屑颗粒间的纳米网络当中,可以获得导电智能人造木材,因碳纳米管能够在其中形成连续的三维网络,因此其具有比传统聚合物/碳纳米管复合材料更好的导电网络和更高电导率。基于这种智能人造木材的高导电性,它可以实现传感、自发热以及电磁屏蔽等多种应用。这种智能人造木材表现出了出色的电磁屏蔽性能(X波段超过90 dB),可以满足精密电子仪器屏蔽标准的要求。这种智能人造木材还可以在1.75 V低电压下(约等于两节五号电池的电压)实现自发热,可在5分钟内升至60摄氏度,这种在低电压下即可自发热木材可有效地确保自加热设备的安全性,同时减少能耗。 这项研究提出了一种生物质颗粒表面纳米化方法和策略,可用于构筑全生物质,不含任何粘结剂,具有优异的力学性能,可复合的新型人造木材。同时,这种全新的生物质表面纳米化策略也可以扩展到其他生物质(例如,树叶、稻草和秸秆等),并可以实现多功能化,有望用于制造一系列绿色全生物质的可持续结构材料,将进一步推动人造板行业向绿色、环保和低碳方向发展。
中国科学技术大学
2021-02-01
一种
生物
溶液浓度的光谱传感测试方法
本发明涉及一种生物溶液浓度的光谱传感测试方法,依据了包层介质的光学响应遵循的物理学因果性原理,根据因果性原理,包层折射率的实部
上海理工大学
2021-05-04
生物
炭农田化肥减施与重金属修复技术
利用农业废弃物秸秆生产生物炭,返施农田,并辅助其它技术, 可以达到固定重金属污染农田,在微污染农田中生产出合格产品,挽 救因重金属污染造成的农田损失;同时可以减少化肥施用量,达到减 施以保护地表环境免受富营养化污染。目前重金属造成农田的污染修 复以及化肥减施大部分属于国家公益项目。 农田重金属固定技术已经在天津东丽区区示范运行 3 年,运行效 果好,蔬菜重金属达到标准,增加农作物产量,减少化肥施用,因此, 广受农民欢迎。
南开大学
2021-04-11
中国科大研制各向同性全
生物
质仿生木材
项目成果/简介:近日,中国科学技术大学俞书宏院士团队通过深入解析生物质微观结构,提出了一种利用生物质天然纳米结构的全新的生物质表面纳米化策略,基于这种策略构筑了一种可持续新型各向同性仿生木材(“RGI-wood”)。该策略巧妙地利用了木屑等生物质中天然的纤维素纳米纤维,将其暴露在木屑颗粒表面,并使其互相交联从而构筑无需任何粘合剂的高性能人造木材。运用这种策略所制备的人造木材在各方向上具有相同的力学强度,且超越了实木材和传统人造板。这种新型人造木材自下而上的制备方式使其在尺寸上将不受限制,可以克服大块实木材料的稀缺性,大大拓宽了这类木质材料的应用范围。另外,其还表现出优异的阻燃性性和防水性。在这种高性能人造木材中,微米级木屑颗粒的暴露着大量的纳米尺度的纤维素纤维,这些纳米纤维通过离子键、氢键、范德华力以及物理纠缠等相互作用结合在一起,微米级的木屑颗粒也被这些互相缠绕的纳米纤维网络紧密地结合一起形成高强度的致密结构,而无需添加任何粘结剂。这种结构特征带来了高达170 MPa的各向同性抗弯强度和约10 GPa的弯曲模量,远超天然实木的力学强度。此外,新型人造木材还显示出优异的断裂韧性,极限抗压强度,硬度,抗冲击性,尺寸稳定性以及优于天然木材的阻燃性。作为一种全生物基的环保材料,新型人造木材不仅不含任何粘结剂,还具有远超树脂基材料和传统塑料的力学性能,因此具有非常广泛的应用前景。 此外,这种由纳米纤维构成的网络也为制备木基纳米复合材料提供了一种新途径。通过将碳纳米管(CNT)掺入木屑颗粒间的纳米网络当中,可以获得导电智能人造木材,因碳纳米管能够在其中形成连续的三维网络,因此其具有比传统聚合物/碳纳米管复合材料更好的导电网络和更高电导率。基于这种智能人造木材的高导电性,它可以实现传感、自发热以及电磁屏蔽等多种应用。这种智能人造木材表现出了出色的电磁屏蔽性能(X波段超过90 dB),可以满足精密电子仪器屏蔽标准的要求。这种智能人造木材还可以在1.75 V低电压下(约等于两节五号电池的电压)实现自发热,可在5分钟内升至60摄氏度,这种在低电压下即可自发热木材可有效地确保自加热设备的安全性,同时减少能耗。 这项研究提出了一种生物质颗粒表面纳米化方法和策略,可用于构筑全生物质,不含任何粘结剂,具有优异的力学性能,可复合的新型人造木材。同时,这种全新的生物质表面纳米化策略也可以扩展到其他生物质(例如,树叶、稻草和秸秆等),并可以实现多功能化,有望用于制造一系列绿色全生物质的可持续结构材料,将进一步推动人造板行业向绿色、环保和低碳方向发展。
中国科学技术大学
2021-04-11
首页
上一页
1
2
...
98
99
100
...
163
164
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果