高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于动态预测的网络驱动层数据包接收方法和系统
本发明公开了一种基于动态预测的网络驱动层数据包接收方法, 包括:建立空白链表和循环队列,并创建内核线程和内核定时器,接 收网络设备中断,执行中断处理程序,并在进入中断处理程序后立即 停止接收网络设备中断,判断网络设备中断指令的类型是接收指令还 是错误指令,如果是接收指令,则判断接收指令的接收描述符中数据 到达位是否为 0,如果不是则判断空白链表中数据包缓存的数量是否 低于阈值,如果不是则从空白链表中获取一个新数据包缓
华中科技大学 2021-04-14
3672A/B/C/D/E矢量网络分析仪 10MHZ~67GHz
上海启莫科技有限公司 2022-03-17
一种基于众核和 GPU 的网络视频流不良内容检测方法和系统
本发明公开了一种基于众核和 GPU 的网络视频流不良内容检测方法,包括:在众核计算平台下获取网络数据包,对网络数据包进行分类,以提取网络数据包中的视频数据包,对视频数据包进行重组,按照网络视频流编码的语法对重组后的视频数据包进行解码,以生成图像序列,GPU 采用基于纹理检测和肤色点检测相结合的方法对图像序列进行预处理,以确定疑似不良图像,GPU 采用 SVM 对疑似不良图像进行精确处理,以确定不良图像。本发明只需获取网络数据包,即可识别出视频流,直接对视频流进行解码后,采用图像匹配检测技术即可识别该视频流是否含有不良信息。
华中科技大学 2021-04-11
北京交通大学超大规模预训练云服务项目竞争性磋商公告
北京交通大学超大规模预训练云服务项目竞争性磋商
北京交通大学 2022-05-27
基于新一代测序的生物信息云平台及其在科研和医疗健康领域的应用
1 项目简介本项目建立的生物云平台,以基于 Web 的方式提供服务,用户可以轻松快速获取服务,国内外普遍缺乏成熟的技术,标准和平台。我们首次把独具特色的机器学习模型预测算法与最新的高通量测序方法( non-polyA RNA-seq) 相结合。我们的研究对象为长链非编码 RNA( non-PolyA),目前国际上还很少有人通过高通量测序技术对疾病的 lncRNA 进行全面预测分析和功能分类。随着测序速度不断提高,测序成本不断降低,本项目将来可以发展为面向人民大众的个性化医疗服务的平台。 图 1 生物医学信息云平台的产业化方向 http://www.incrna.org图 2 生物医学信息云平台的应用程序一览 http://bioinfo.life.tsinghua.edu.cn/serve 本项目使用的核心技术“基于整合性生物信息云计算和新一代测序技术( incRNA) 的非编码基因组疾病(如癌症)检测技术平台”已经通过软件查新认证( 20121022044750914)。正在准备申请国家版权局软件著作权登记证书。2 效益分析( 1)随着新一代高通量测序技术的发展,生物信息数据爆炸式增长,数据解读成为生物医学研究和临床应用的巨大问题,我们团队依托清华大学生命学院鲁志实验室在生物信息学,尤其是在 lncRNA 领域的技术专长开发的云计算平台将为广大科研工作和和临床用户提供可靠的数据分析云服务,提高他们的科研效率,为科学的发展做出贡献。 ( 2)我们团队通过与中国人民解放军总医院,上海肝胆医院等十多家临床单位的合作,将为鉴定癌症的早期诊断和药物治疗提供新的靶点,这不仅会增强中国基础临床科学的发展,通过临床应用还会为病患者带来癌症早期诊断、健康管理等个性化医疗服务,这将具有广泛的社会效益。 ( 3)通过我们打造高通量测序数据分析云计算平台和开展以癌症早期检测为主要内容的个性化医疗服务,将为中国培养一批高水平的生物信息数据分析人才,这将增强中国在生物信息学方面的实力。
清华大学 2021-04-13
数据中心高密插卡式云计算TOR交换机RG-S6920-4C
面向AI等应用发展趋势推出的新一代高性能、高密度插卡式交换机 产品特性: 固化4个扩展插槽,每槽位最大可支持32个100G端口,更好满足数据中心网络演进需求 支持2+2电源与5+1风扇热插拔,支持GR完美重启,实现硬件与链路可靠性双重保护 三层路由功能轻松适配多重业务,数据传输高效有保障 多重管理方式选择 网络维护简单有效 构建下一代数据中心网络 AI/机器学习等应用的高速发展,驱动下一代数据中心网络向100G/400G演进。下一代数据中心网络,要求设备在单位空间内,具备更高的性能、更大的带宽,RG-S6920-4C在4U高度空间内,最大可提供128个100G端口,或64个100G端口+16个400G端口,更好的满足下一代数据中心网络的演进需求。 构建高性能、低延时数据中心网络 RG-S6920-4C交换机配合RG-S6510系列交换机,基于PFC/ECN等网络流控技术,以及MMU调优技术,可构建端到端、无损、低时延转发的RDMA(Remote Direct Memory Access,远程直接内存访问)基础承载网络,满足AI/机器学习、高性能计算、分布式存储大数据等应用场景的网络部署要求。 电信级可靠性保护 RG-S6920-4C交换机支持2+2电源冗余,5+1风扇冗余,所有电源模块以及风扇模块均可以热插拔而不影响设备的正常运行。此外整机还支持电源和风扇的故障检测及告警,可以根据温度的变化自动调节风扇的转速,更好的适应数据中心的环境。还具备设备级和链路级的多重可靠性保护。采用过流保护、过压保护和过热保护技术。 除了设备级可靠性以外,该系列还支持丰富的链路可靠性技术,比如支持GR快速重启、BFD快速转发检测等机制。当网络上承载多业务、大流量的时候,降低异常对网络业务的影响,提升整网可靠性。 IPv4/IPv6双栈协议多层交换 RG-S6920-4C交换机,硬件支持IPv4/IPv6双协议栈多层线速交换,硬件区分和处理IPv4、IPv6协议报文,支持多种Tunnel隧道技术(如手工配置隧道等等),可根据IPv6网络的需求规划和网络现状,提供灵活的IPv6网络间通信方案。 支持丰富的IPv4路由协议,包括静态路由、RIP、OSPF、IS-IS、BGP4等,满足不同网络环境中用户选择合适的路由协议灵活组建网络。 支持丰富的IPv6路由协议,包括静态路由、RIPng、OSPFv3、BGP4+等,不论是在升级现有网络至IPv6网络,还是新建IPv6网络,都可灵活选择合适的路由协议组建网络。 完善的管理性 支持丰富的管理接口,例如Console、MGMT口、USB口,支持SNMPv1/v2/v3,支持通用网管平台。支持CLI命令行, Telnet,集群管理,使设备管理更方便,并且支持SSH2.0、SSL等加密方式,使得管理更加安全。 支持SPAN/RSPAN镜像和多个镜像观察端口,可以将网络流量输出分析以采取相应管理维护措施,使原本不可见的网络业务应用流量变得一目了然,可以为用户提供多种网络流量分析报表,帮助用户及时优化网络结构,调整资源部署。
锐捷网络股份有限公司 2022-09-19
揭示1600-2012年间中国磷循环网络韧性的演变规律和影响因素
北京师范大学环境学院梁赛教授课题组研究成果在《自然》子刊《自然·食品》(Nature Food)以研究论文形式在线发表(Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012)。该研究分析了1600-2012年间中国磷循环网络的韧性,研究结果表明,受自然流动、化肥使用和饮食转变的影响,近几十年中国磷循环网络的韧性呈下降趋势。 磷元素是人类生存和生态系统运转所需要的一种必要营养元素。对人类和生态系统而言,磷循环网络在遭受外部冲击时仍能持续保障磷供给的能力(即韧性)至关重要。已有研究主要通过磷元素代谢路径分析来研究磷资源使用和磷排放问题,较少关注磷循环网络的韧性。本研究首次综合运用生态网络分析等方法,对1600-2012年间中国磷循环网络的韧性进行了测度研究与影响因素分析。 结果表明:为满足中国不断增长的食品消费总量和结构的需求,中国磷循环网络从由土壤自然磷流主导转变为由化肥生产的工业磷流主导,并不断强化。这种变化降低了网络中的冗余路径,从而导致近几十年来磷循环网络的韧性呈下降趋势。城市化进程加剧了磷的单向流动,进一步降低了磷循环网络的韧性。特别是在2000-2012年间,由于人群饮食结构中动物性食物比重不断提高,磷循环网络的韧性下降了11%。如果按这种趋势继续发展,在社会环境的冲击和干扰下,磷供应会逐渐成为影响中国粮食安全的重要因素。 为提高磷循环网络的韧性,本研究提出减少食物损失和浪费、提高“农田到餐桌”食物供应链效率、减少化肥使用、提升磷循环率等措施,并进一步量化这些措施对磷循环网络韧性的提升程度。此外,本研究的框架和指标也适用于分析其他地区和资源的网络韧性,可以为全球可持续发展目标的实现提供科学依据。 本研究由北京师范大学和华东理工大学领衔,国际应用系统分析研究所、意大利欧洲-地中海气候变化中心和意大利威尼斯大学、美国陶森大学、捷克共和国马萨里克大学、美国密歇根大学、中山大学、清华大学、英国伦敦大学学院、广东工业大学等单位组成团队共同完成。北京师范大学梁赛教授和华东理工大学余亚东副教授为论文共同第一作者,北京师范大学梁赛教授、华东理工大学余亚东副教授和英国伦敦大学学院米志付研究员为论文的共同通讯作者。合作作者杨志峰院士对论文完成给予了重要指导。该研究得到国家自然科学基金等项目的资助。
北京师范大学 2021-02-01
一种基于神经网络的反演大气可降水量的MODIS模型改进方法
本发明公开了一种基于神经网络的反演大气可降水量的MODIS模型改进方法,包括以下步骤:S1:利用MODIS三通道比值法反演大气可降水量PWV,记为PWVMODIS;S2:利用BP神经网络建立测站处的纬度φ、测站处的高程h、年积日doy、PWVMODIS与测站GPS/MODIS反演的PWV残差RES之间的非线性关系;S3:对BP神经网络模型进行训练;S4:将φ、h、doy以及PWVMODIS作为输入参数代入BP神经网络模型,并计算出GPS测站处PWV残差RESBP;S5:利用RESBP补偿PWVMODIS,获得大气可降水量PWV=PWVMODIS+RESBP。本发明有效提高了建模精度。
东南大学 2021-04-11
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
项目成果/简介:本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-10
揭示1600-2012年间中国磷循环网络韧性的演变规律和影响因素
北京师范大学环境学院梁赛教授课题组研究成果在《自然》子刊《自然·食品》(Nature Food)以研究论文形式在线发表(Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012)。该研究分析了1600-2012年间中国磷循环网络的韧性,研究结果表明,受自然流动、化肥使用和饮食转变的影响,近几十年中国磷循环网络的韧性呈下降趋势。 磷元素是人类生存和生态系统运转所需要的一种必要营养元素。对人类和生态系统而言,磷循环网络在遭受外部冲击时仍能持续保障磷供给的能力(即韧性)至关重要。已有研究主要通过磷元素代谢路径分析来研究磷资源使用和磷排放问题,较少关注磷循环网络的韧性。本研究首次综合运用生态网络分析等方法,对1600-2012年间中国磷循环网络的韧性进行了测度研究与影响因素分析。 结果表明:为满足中国不断增长的食品消费总量和结构的需求,中国磷循环网络从由土壤自然磷流主导转变为由化肥生产的工业磷流主导,并不断强化。这种变化降低了网络中的冗余路径,从而导致近几十年来磷循环网络的韧性呈下降趋势。城市化进程加剧了磷的单向流动,进一步降低了磷循环网络的韧性。特别是在2000-2012年间,由于人群饮食结构中动物性食物比重不断提高,磷循环网络的韧性下降了11%。如果按这种趋势继续发展,在社会环境的冲击和干扰下,磷供应会逐渐成为影响中国粮食安全的重要因素。 为提高磷循环网络的韧性,本研究提出减少食物损失和浪费、提高“农田到餐桌”食物供应链效率、减少化肥使用、提升磷循环率等措施,并进一步量化这些措施对磷循环网络韧性的提升程度。此外,本研究的框架和指标也适用于分析其他地区和资源的网络韧性,可以为全球可持续发展目标的实现提供科学依据。 本研究由北京师范大学和华东理工大学领衔,国际应用系统分析研究所、意大利欧洲-地中海气候变化中心和意大利威尼斯大学、美国陶森大学、捷克共和国马萨里克大学、美国密歇根大学、中山大学、清华大学、英国伦敦大学学院、广东工业大学等单位组成团队共同完成。北京师范大学梁赛教授和华东理工大学余亚东副教授为论文共同第一作者,北京师范大学梁赛教授、华东理工大学余亚东副教授和英国伦敦大学学院米志付研究员为论文的共同通讯作者。合作作者杨志峰院士对论文完成给予了重要指导。该研究得到国家自然科学基金等项目的资助。
北京师范大学 2021-04-10
首页 上一页 1 2
  • ...
  • 105 106 107
  • ...
  • 110 111 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1