高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
自动控温加热电缆
自动控温加热电缆是一种新型、有别于常规输电或信号控制的特种电缆,其自身是个通电发热体,并可不要任何外接控制元件而根据被加热物体温度的变化,自动调节发热状态和发热功率,既保证被加热物体安全,也保证电缆的安全,同时还可以节约能源。早期的加热电缆,是一种用电阻丝等材料制成的恒定功率输出的电缆,其工作时需要配备一套温度测感和控制系统,随着自动控温加热电缆的诞生其逐
西安交通大学 2021-01-12
热电偶传感器
量程:-200℃~1000℃,分辨率1℃;用于火焰内焰、中焰、外焰以及其他高温物体的温度测量。
宁波华茂文教股份有限公司 2021-08-23
低温无压烧结纳米陶瓷用高烧结活性复合纳米ZrO2粉末微球
研发阶段/n本发明涉及一种低温无压烧结纳米陶瓷用高烧结活性复合纳米ZrO2粉末微球的一步合成法,其利用乳浊液法控制团聚粉末的形状(球形),利用均匀沉淀法控制一次纳米颗粒的大小、团聚和粒径分布,利用共沉淀法控制团聚粉末的成分与结构的均匀性,从而一步合成复合纳米ZrO2(CaO,MgO)软团聚粉末微球,将制粉和造粒过程一步完成。本发明涉及的方法可以有效解决低温无压烧结制备纳米陶瓷这一难题,大大加快纳米ZrO2陶瓷的实用化进程。
湖北工业大学 2021-01-12
磁流体热磁对流在电子器件散热中的应用
项目概况 针对小型化、集成化、高频率和高运算速度的电子器件,应用磁流体的热磁对流效应,把磁流体作为新一代高效传热冷却技术用于高密度高功率电子器件设备中。 主要特点 1. 选择合适的外加磁场和屏蔽技术。 2.温度区内磁场梯度条件和粒子浓度的准确控制 3.磁流体微型热管散热过程的磁场的准确定位。 技术指标     建立适合电子器件密集环境下适用磁流体散热技术及相应的磁场条件和屏蔽技术,提高了磁流体在磁场、热场和重力场协同作用下的流动传热效果。促进节能环保技术的发展,达到节能减排的绿色材料应用。市场前景 目前该项目已通过现场的工业化证明,散热效果好,能达到电子器件冷却要求,满足工业生产的需求,在生产过程中无污染,无三废排放。该项目可应用于高密度、高功率电子器件密集环境下的散热设备中,具有较好的经济效益和社会效益。
南京工程学院 2021-04-11
本体热效率达51.09%柴油机诞生
在全球首款本体热效率50.23%的商业化柴油机研发成功480天之后,这一纪录被再度刷新。
科技日报 2022-01-10
黄土发泡轻质材料制备技术
用混凝土进行发泡制备轻质材料已经得到较广泛的应用,但是混凝土发泡材料比重仍然较大,应用受到限制;且混凝土发泡所用的主料水泥是用高温煅烧生产的,不仅耗能,也排放温室气体。黄土为无机类氧化物,资源丰富,价廉易得,不需要高温进行煅烧即可直接使用,本项目利用粉碎到一定细度的黄土进行发泡,制造块状泡孔材料,可用于保温、隔热、隔音、工程填土和建筑隔断等,既节能又环保。技术路线为:将黄土制成水浆料,用水溶性包覆剂在颗粒表面进行包覆处理后,在适量的水溶性聚合物、发泡剂、助剂作用下进行搅拌发泡,得到发泡浆料;将发泡浆料倒入不同的模具,待其自然干燥后,得到不同形状的黄土发泡轻质材料;或将发泡浆料直接浇注到应用场所,得到黄土发泡浇注块。本项目的技术关键在于有效地选择适当的发泡剂、添加剂,并控制好发泡时间段。该发泡材料制备工艺简单、成本低廉,有较好的经济效益。
华东理工大学 2021-04-11
烧结钕铁硼铸片产业化技术
中国烧结钕铁硼磁体生产厂家大部分仍采用传统工艺(普通铸锭、中粗细破碎、气流磨制粉、垂直磁场成型、冷等静压、烧结)生产,烧结钕铁硼用合金大部分是采用模铸(Mold Casting)工艺,严重影响磁体的档次。 日本烧结钕铁硼的生产工艺是合金铸片、氢破碎技术、气流磨、一次磁场成型和烧结。钕铁硼合金铸片生产企业主要有日本三德金属、昭和电工和住金钼,合金品质高,为高档烧结钕铁硼磁体提供优质合金。 鉴于日本生产技术和分工的优越性,中国钕铁硼行业正在逐步采用日本模式。为此,本项目在国家科技攻关重大项目支持下,开发出具有自主知识产权的烧结钕铁硼用合金铸片产业化技术。该技术的优点有:(1)“快冷片”凝固速率比铸锭快,阻止了a-Fe枝晶生成。实验表明:传统工艺稀土总量低于33wt%时铸锭中开始出现枝状a-Fe相,稀土总量越低,铸锭中的a-Fe相越多;快冷厚带工艺只要稀土总量不低于28.5wt%,“快冷片”中就没有a-Fe出现;(2)Nd2Fe14B主相晶粒中有许多富Nd相小片,在氢破碎后形成很多微裂纹,又无大的a-Fe枝晶,因此铸片的粉碎性能很好,确保了在氢破碎和气流磨后可以形成单晶粉末,使粉末定向排列最佳,从而提高磁体的剩磁;(3)“快冷片”中富Nd相分散得很好,使烧结时液相分布最佳,有利于在较低的烧结温度下得到高密度、高矫顽力的磁体;(4)稀土总量可以大大降低,又不会形成缺稀土区域(它会使退磁曲线方形度下降),这对生产高矫顽力、高磁能积至关重要,同时可以降低Dy、Tb的用量;(5)磁体的氧含量低。
北京科技大学 2021-04-11
微波介质陶瓷及其低温烧结特性研究
在现代通信中,微波介质陶瓷被广泛地应用在谐振器、滤波器、介质基板、介质天线和介质波导回路等领域中。本课题组近年来开发了一系列拥有自主知识产权的低、中、高介电常数的微波介质陶瓷材料及低烧陶瓷体系,可以广泛应用于介质谐振器、双工器、低温共烧陶瓷技术(LTCC)等领域中。
西安交通大学 2021-04-11
高性能低温烧结温度稳定高频MLCC
随着现代电子技术的飞速发展,片式电容(MLCC)的市场需求量日益增加,片式电容(MLCC)是先进陶瓷介质材料与精细制备工艺相结合的高技术产品。在电子信息、集成电路、计算机、自动控制、通讯技术、航空航天、汽车工业、军用国防和民用电子设备等领域广泛应用,市场十分广阔,片式元件及其材料的科研水平和产业化程度已成为衡量一个国家微电子基础工业发展程度和科技水平高低的
西安交通大学 2021-01-12
烧结零件密度测试仪
产品详细介绍多功用固体、液体两用密度测试仪,是一款可同时测量固体密度和液体密度、浓度的仪器,  固体形式:依据ASTM D792、GB÷T 1033、JIS-K-6268、、HG4-1468、ISO 2781标准。采取阿基米得原理浮力法,正确、直读量测数值。  液体形式:依据GB÷T5526、13531、15223、JIS、ISO标准。运用阿基米得原理的浮力法、水中置换法,疾速、直读读出液体绝对密度值。 多功用固体、液体两用密度测试仪,实用于测量橡胶、塑料、塑料颗粒、电线电缆、轮胎、粉末冶金、精细陶瓷、玻璃工业、液体、化工溶液、增加助剂等新资料钻研试验室等。多功用固体、液体两用密度测试仪参数:型 号:   DX-300      DX-600测量规模: 0。005-300g 0。005-600g密度精度: 固体形式:0。001g÷cm3液体形式0。001g÷cm3测试品种: 固体、橡胶、浮体、液体等测量形式: 固体体形式:可用于测试固体资料视密度、体积、混杂比,实用于测量橡胶、塑料、塑料颗粒、电线电缆、轮胎、粉末冶金、精细陶瓷等。液体形式:可用于测试液体密度、浓度。可测真溶液、疏散液、悬浮液、乳状液、稀薄液、浆液等所有具备活动性的液体参数设定: 温度弥补设定、溶液弥补设定打印机设定: 标准RS-232接口,可选购打印机不便地将屡次测量后果打印输入L多功用固体、液体两用密度测试仪规格:名 称: 多功用固体、液体两用密度测试仪型 号: DX-600实用于: 实用于测量橡胶、塑料、塑料颗粒、电线电缆、轮胎、粉末冶金、精细陶瓷、玻璃工业、液体、化工溶液、增加助剂等新资料钻研试验室等。原 理: 固体形式:依据ASTM D792、GB÷T 1033、JIS-K-6268、、HG4-1468、ISO 2781标准。采取阿基米得原理浮力法,正确、直读量测数值。液体形式:依据GB÷T5526、13531、15223、JIS、ISO标准。运用阿基米得原理的浮力法、水中置换法,疾速、直读读出液体绝对密度值。 多功用固体、液体两用密度测试仪功用特征:  ●固体体形式:可用于测试固体资料视密度、体积、混杂比,实用于测量橡胶、塑料、塑料颗粒、电线电缆、轮胎、粉末冶金、精细陶瓷等。  ●液体形式:可用于测试液体密度、浓度。可测真溶液、疏散液、悬浮液、乳状液、稀薄液、浆液等所有具备活动性的液体   ●针对生胚、毛坯件,如:磁芯生胚、陶瓷毛胚、粉末冶金生胚件等遇水易崩溃的产品,可采取硅油或许煤油当媒介液,疾速读取其比重值  ●具备温度和溶液弥补功用,采取大水槽设计,下降吊栏线的浮力所形成的误差。  ●标准的RS232数据输入功用,可随便的衔接PC和打印机。  ●蓝色背光液晶显示。  ●采取美国出口镀金陶瓷传感器。  多功用固体、液体两用密度测试仪操作步骤: ①、将待测固体样品放至密度计测量台上,稳固后按“Memory”键记忆空重(样品在空气中的分量)。 ②、将待测固体样品放入水中的吊篮上,稳固后按“Memory”键记忆水重(样品在水中的分量),仪器立刻间接显示所测固体样品的密度;按“F”键切换数值,顺次显示所测固体样品的密度、体积。
厦门群隆仪器有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 433 434 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1