高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种利用液体热电效应进行发电的系统
本发明公开了一种利用液体热电效应进行发电的系统,它由高温循环回路、液体热电发电系统和低 温循环回路组成;高温循环回路上设有热交换器,工厂或环境中的低温热能在热交换器内与热循环工质 进行热交换,低温循环回路中设有冷凝器,低温循环工质在冷凝器中进行冷却;当离子交换膜为阴离子 交换膜时,高温循环回路和低温循环回路分别经过液体热电发电单元的正负极。本发明对热能温度要求 较低,只要液体热电发电单元两端存在温差就可以正常运行,在电厂和工厂余热以及海水低温热
武汉大学 2021-04-14
巨热电势的离子热电材料
基于Seebeck效应的热电转换材料可以实现热能与电能之间的直接相互转换,可为物联网体系中的小型传感器或电子设备提供可持续工作的电能。目前,基于传统电子型的热电转换材料(e-TE)在室温环境下捕获的能量可以达到毫瓦级的输出功率,但是受半导体电声输运行为的限制,优化的热电势约在200 μV/K左右。为获得1-5伏的供传感器工作的电压,在室温环境下的小温差工况下需要成千上万对n/p传统电子型热电对,增加了热电器件的集成难度和复杂程度;或者需要外接DC-
南方科技大学 2021-04-14
SnSe热电材料
研究发现具有层状结构的SnSe的二维界面对声子具有强烈的散射作用 (图1左),使得SnSe沿着层间方向具有很低的热导率,在773K温度下可达最小理论值 ~ 0.18 W/mK。寻找低热导率材料和降低热导率是热电领域长期以来提高热电优值ZT的有效途径。在聚焦SnSe层间低热导率的基础上,如能在此方向上实现高的电传输性能,则可实现高的热电性能。通过简化由 Wiedemann-Franz和Pisarenko关系决定的载流子浓度对ZT值的束缚后,ZT值关系可简化为: ,可见提高层间电传输性能需同时优化载流子迁移率 (m) 和有效质量 (m)。 由于SnSe材料在800K温度点存在一个从Pnma到Cmcm的相变,经过同步辐射和变温TEM实验测试发现该相变从600K便开始持续发生。利用该持续相变特性,通过调整电子掺杂浓度可将轻导带和重导带之间经历一个简并收敛 (增加有效质量和减小迁移率) 和退简并收敛 (减小有效质量和增加迁移率) 的过程。利用这一过程,恰好优化了迁移率和有效质量的乘积 (mm) (图1中),使得SnSe在整个温度范围内都保持较高的电传输性能。通过对比电子和空穴掺杂的n型和p型SnSe材料发现,通过电子掺杂后Sn和Se的p轨道在导带底会产生电子离域交叠杂化(而在价带顶则不存在这一现象),使得n型SnSe的电荷密度增大到足以填满层间空隙,实现了层间电子的隧穿 本征的SnSe的层状结构就像一堵墙,可以同时阻碍声子和载流子 (电子和空穴) 的传输。但通过重电子掺杂后,导带底的电子离域杂化现象增大了电荷密度,在墙内和墙之间只为电子量身定制了一条传输的隧道,如图2所示。在大电荷密度的基础上,加之连续相变引起的能带结构变化和晶体对称性的提高三个主要因素使得SnSe在层间方向表现出优异的电传输性能,当温度高于700K时,在SnSe的层间方向产生了比层内更优异的“三维电荷”传输效应。这种 “二维声子/三维电荷” 传输特点大幅提高了n型SnSe的热电性能。
南方科技大学 2021-04-13
GeTe热电材料
通过制备合适比例的Bi2Te3与GeTe的合金,人为地向体系中引入了大量的Ge空位缺陷,且如图所示,运用球差矫正电子显微镜的观测技术可以清楚地观测到这些Ge空位的前驱体空位“簇”。通过合适的热处理优化过程,研究人员还追踪到此类前驱体逐步演化成van der Waals gap空位面缺陷的过程。这些面缺陷会在材料内部诱导产生大量呈负电性的新的180度铁电畴结构,平衡材料内由载流子浓度过高导致的过剩的正电性,最终达到优化材料性能的目的。最终,该项工作使得GeTe基热电材料的总体性能大幅提升,在温度达到773K时,该体系热电材料优值ZT达到了2.4,相比于优化前,提升了60%;在323~773K较宽的工作温度区间内,材料的平均ZT高达1.28,相比于优化前整整提升了一倍,达到了中温区热电材料在商业应用中对性能的需求,使其成为中温区优良的候选材料。
南方科技大学 2021-04-13
PbTe热电材料
目前p和n型PbTe材料都拥有了非常高的热电优值。然而,PbTe材料的机械性能差,远低于其他主流的热电材料。比如,PbTe材料的洛氏硬度和抗冲击韧性分别只有39 kgmm-2和0.35 MPam1/2,远低于Bi2Te3的。这一矛盾非常不利于PbTe材料的实际应用。何佳清团队之前在n型PbTe材料中加入单质Sb,得到PbTe-3%Sb复合材料,显著提高了热电性能 (Energy and Environmental Science, 2017,10,2030)。本文在之前工作的基础上,进一步采用了固溶PbS的方法,将n型PbTe-3%Sb材料的硬度提高了60%,而其热电优值仅仅降低了6%。这一结果使PbTe材料摆脱了当前的窘境。研究发现固溶PbS(<12.5%)虽然对弹性性质如弹性模量等参数影响很小,却可以引入大量的点缺陷和位错网。因此硬度的增强主要是由于缺陷对位错运动的阻碍,而非化学键的强化作用。之前的观点认为是固溶PbS之后,PbTe材料内部的成分波动(团簇)造成了硬度显著增强。该团队的发现从一个新的视角解释了PbTe-PbS合金体系硬度的强化。
南方科技大学 2021-04-13
PbTe基热电材料
PbTe材料体系作为p型热电材料有着优异的性能,不但呈现出较高的热电优值ZT=2.3@923K(Energy Environ. Sci., 2015, 8, 2056),并且在室温到900K的温度范围拥有较高的平均热电优值ZTave=1.56,因而其理论发电效率可达20.7%(Nat. Commun. 2014, 5, 4515)。这两篇论文从不同的方法和机制出发,在n型PbTe研究上实现了重大突破,极大地平衡了n型PbTe相较于p型材料性能的劣势。 第一篇论文中,该团队研究发现:通过InSb的复合及实验条件的控制,有效地在PbTe基体材料中引入多相纳米结构,可同时优化该材料体系的热、电输运性能。一方面,纳米相和基体之间的能量势垒(势阱)可以通过能量过滤效应提高Seebeck系数,进而增强功率因子;另一方面,多重纳米相的引入增强了界面处的声子散射可降低晶格热导率。最终,在n型PbTe-4%InSb复合材料中,获得极高的热电优值ZT=1.83(773 K),是目前n型PbTe材料体系中的最高值。
南方科技大学 2021-04-13
室温热电材料
以MgSbBi为主要元素 N型热电新材料,在50-250℃的温度范围内具有和碲化铋基相当的热电性能和更好的力学韧性(3倍的KIC)(如图2所示),而元素价格仅为传统N碲化铋材料的1/4,因此有望取代传统N型室温热电材料,这是热电材料领域的重要突破。 该研究工作融合了能带结构工程调控材料的禁带宽度和Mn掺杂抑制材料的本征镁空位缺陷的技术策略,从而实现了该材料室温热电性能的突破。这项研究对于未来继续寻找更为性能优异的室温热电材料有很重要的指导意义。 此外,值得一提的是高性能的室温热电材料被列为2018年国家重点研发计划“变革性技术关键科学问题”之一。因此,新型的室温热电材料将成为下一个热电材料领域的热点。
南方科技大学 2021-04-13
一种热电模组热电转换效率的测试装置
本实用新型公开了一种热电模组热电转换效率的测试装置。加热台保护栏围在电加热台侧面周围,电加热台上安装有用于安装热电模组的测量组件,支撑杆上部固定有将测量组件压紧的压紧组件;底板上设有外罩,底板和外罩的内部空间的空隙填充绝热材料。本实用新型能够用于全面测试热电模组在不同压力、不同温差下的各项热电性能参数,为综合评价热电模组性能提供依据。
浙江大学 2021-04-13
聚合物热电材料
给体片段以氟原子修饰的n型给受体聚合物热电材料,利用聚合物链间的给受体相互作用维持聚合物的电子迁移率,通过引入氟原子增加聚合物的电子亲和性以提高n掺杂效率,两者的协同作用大幅度提高了聚合物的n型电导率。通过进一步提高聚合物的塞贝克系数,成功地将n型给受体聚合物的热电性能提高了三个数量级。引入氟原子的聚合物的n型电导率提升至1.3 S/cm,功率因子提升至4.6 μW/mK2,是目前n型给受体聚合物热电材料的最佳性能。通过对聚合物在掺杂状态下的电子顺磁共振谱、紫外光电子能谱和X射线光电子能谱的表征证明了氟原子的引入提高了聚合物的n掺杂能力。场效应晶体管器件结果则表明氟原子的引入提高了聚合物在n掺杂状态下的电子迁移率。这两者的协同作用使得该聚合物的电导率相比没有引入氟原子的聚合物提高了1000倍。此外,掠入射X射线衍射、原子力显微镜以及导电原子力显微镜实验证明了氟原子的引入改变了聚合物的分子排列,提高了聚合物与掺杂剂的混溶性,使聚合物从“局部掺杂”的状态转变为“均匀掺杂”状态,从而维持了掺杂聚合物较高的n型塞贝克系数。
北京大学 2021-04-11
热电系数测量仪
热电系数测量仪又称热电仪,用于测量某些材料的热电系数(塞贝克系数)。本仪器是根据地质、矿业、物探、半导体科研院所的需求而研制的新型自动化数字化热电系数测量仪,用于测量具有半导体特性的各种矿物,如黄铁矿等及一般半导体材料的热电系数和导型(N型、P型)。本仪器适合于矿业、地质、物探、半导体等有关科研院所和高等学校使用。典型型号BHTE-06、BHTE-08特别适合测量直径在0.1-1.0mm之间的微小晶体的热电系数和导型。本仪器已获得了较广泛的实际应用,用户满意度为100%,返修率为零。 技术性能和指标:1. 数字化、自动化测量,与笔记本(或台式)计算机配合,实现无纸化测量和记录;数据自动显示及保存成便于统计分析的格式,不需要用户在纸上作任何记录;适合大批量样本的快速测量;2. 活化温度和量程可设定;3. 读数分辨力:0.1μV/℃;4. 可方便地测量直径小至0.1mm的矿物颗粒;5. 测量效率高,操作熟练后一般可达10~15粒/分;6. 方便携带,可随身带到矿区现场使用。
北京航空航天大学 2021-04-13
1 2 3 4 5 6
  • ...
  • 21 22 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1