高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
在高效钙钛矿太阳能电池研究方面的进展
以传统两步法为基础,设计提出了钙钛矿籽晶诱导生长的两步旋涂法,通过在碘化铅薄膜中引入含铯钙钛矿籽晶,使籽晶提供后续钙钛矿生长的成核位点,引导高质量薄膜生长,解决两步法中无机阳离子的有效掺杂问题。通过籽晶诱导,可实现对成核和晶粒大小的精确调控,有效掺入无机Cs离子,器件的能量转化效率提升至21.7%,同时,器件在AM1.5G太阳光下持续工作140小时后,仍然保持超过60%的初始效率,远优于传统两步法数小时的稳定性。图1. a) 籽晶法制备钙钛矿薄膜过程示意图。 b) 光致发光显微原位探测籽晶法中钙钛矿实时生长过程。 进一步的,赵清教授课题组设计了氯化铯增强碘化铅前驱液两步法,在进一步提高钙钛矿薄膜中碱金属离子含量的同时,减缓钙钛矿的成核、生长过程,获得了具有更大晶粒、更低缺陷态密度的钙钛矿多晶薄膜。基于此制备得到的平面正式钙钛矿薄膜太阳能电池器件具有更高的能量转化效率22.1%、器件的长时间工作稳定性也得到了提高,在AM1.5G太阳光下工作70小时后,依然能够保持90%的初始效率。在两步法制备钙钛矿薄膜与太阳能电池器件方面,对碱金属离子的均匀高效掺入、器件性能的提高等问题提供了新的思路。
北京大学 2021-04-11
高能量、长寿命的水系可充放 镍铋电池
利用三维高结晶度的Bi纳米结构抵消储能转换反应引起的结构内应力,成功构筑了首款可充放的Ni//Bi电池(Adv. Mater., 2016, 28, 9188–9195.)。为了进一步提高镍铋电池的能量密度和寿命,该团队在前期基础上最近通过原位活化的策略制备了一种高载量的三维多孔的铋-碳复合材料,作为水系镍铋电池的高性能负极材料。这种多孔氮掺杂的碳三维结构不仅可以实现高载量铋的均匀负载,而且可以提供快速的电子传输和离子扩散的通道,有利于提高电极的容量和倍率性能。因此,制备的铋-碳复合电极具有很好的润湿性和活性面积,表现出较高的容量(2.11 mAh cm-2和166.2 mAh g-1)和优异的倍率性能(2.11 mAh cm-2和120 mA cm-2)。更重要的是,基于这种铋-碳复合材料为负极,Ni-NiO为正极组装的柔性镍铋水系可充放电池具有很高的能量密度(16.9 mWh cm-3)和出色的循环寿命(充放电5000次后仍有94%的容量保持率),优于很多研究报道的水系电池。
中山大学 2021-04-13
钙钛矿光伏材料/钙钛矿太阳能电池
2021 年 3 月 26 日,Science(《科学》)在线发表了西北工业大学黄维院士团队的研究成果 Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity。此项研究独创性地提出以一种多功能的“离子液体”作为溶剂来替代传统的有毒的有机溶剂制备钙钛矿光伏材料,用这一方法制备的材料具有稳定性高、制备工艺简单等优势。相关研究成果解决了传统钙钛矿光伏材料制备过程中的世界性难题,实现了光伏领域的重大突破。离子液体及其制备的钙钛矿太阳能电池 团队研发的可折叠柔性电子产品。目前,全球以“光伏”为代表的可再生能源产业链驶入发展快车道。其中,钙钛矿光伏功不可没,它相比传统太阳能电池板中使用的硅晶体,不仅更便宜、更轻薄、可变型,同时成本也更低廉、更环保,在应用范围上将产生颠覆性变革。因此,钙钛矿光伏材料的研究已经成为各国科学家追逐的“热点”。“未来,沙漠腹地、楼宇外墙、手机等都不再需要传统电池,只需要一块更低廉、更清洁,薄如纸张的钙钛矿太阳能电池就能够满足所需。同时,还可以应用在柔性可穿戴、航天器搭载等重要领域。” 团队“大师兄”晁凌锋对钙钛矿光伏材料应用前景充满信心。 黄维院士团队致力于钙钛矿光伏材料研究,通过原始创新解决材料不稳定、光电转化率不高、工艺制备复杂且污染性较高等卡脖子难题。 
西北工业大学 2021-04-13
一种液态或半液态金属电池荷电状态估计方法
本发明公开了一种液态或半液态金属电池荷电状态估计方法, 根据电池的等效电路获取状态空间表达式;通过参数辨识,获取等效 电路参数与 SOC 的函数关系;根据等效电路参数初始值以及电池欧姆 内阻、电池电动势与 SOC 的函数关系,获取系统矩阵初始值、控制输 入矩阵初始值以及观测矩阵;采用扩展卡尔曼滤波算法,获取状态估 计时间更新矩阵和误差协方差时间更新矩阵;从中提取电池的 SOC 的 预测值、极化电压和扩散电压、获取电池电动势的值、以及欧姆内阻 压降;根据电池电动势、极化电压、扩散电压以及欧姆内阻压降,
华中科技大学 2021-04-14
用于快充锂离子电池的大尺度单层颗粒电极设计
本成果提出了一种由大尺度单层颗粒组成的电极结构,该电极具有垂直于集流体的载流子传输通道,能够解决高载量电极所面临离子传输速率慢的问题。将红P负载到具有垂直排列纳米通道(~22nm)的大块石墨烯基颗粒中(红P/VAG,~60μm),设计了由大尺度单层红P/VAG颗粒组成的电极。所设计的电极能够同时实现锂离子电池的快速充电和高的能量密度,具有非常广阔的应用前景和巨大的商业价值。
华中科技大学 2022-07-05
具有碲钼多层复合薄膜的碲化镉太阳电池
具有碲钼多层复合薄膜的碲化镉太阳电池,属于新能源材料与器件领域。这种太阳电池采用一种碲钼多层复合薄膜作为碲化镉太阳电池的无铜过渡层。一方面,由于过渡层具有碲的析出相,因此在碲化镉退火后,无需采用湿法工艺获得富碲层。如果采用干法工艺,也无需单独沉积一碲层。另一方面,过渡层具有碲化钼的主相,作为p型半导体,与碲化镉价带不连续很小,可起到很好的过渡作用,实现碲化镉与金属电极间的欧姆接触。采用上述结构的太阳电池,避免了化学腐蚀,实现了低电阻接触,可有效提高太阳电池的性能和改善器件的长效稳定性。
四川大学 2016-10-25
低光强下高转换效率染料敏化太阳能电池
本成果通过溶液中的柠檬酸和乙二醇发生聚合酯化反应生产聚酯,有机醇盐中的Ti-O键均匀的分散和固定在聚酯网络中,在退火时聚酯分解产生大量极其微小的气孔,从而形成了粒径小、比表面积大的结构。同时由于P25 的TiO2粉末在聚酯中不可能完全均匀分布,因此,在退火后表面出现了不规则的纳米粒子堆积凸起形成的孔道;而通过双层成膜方式,使其粒子分布更均匀,连接性更好,从而表现出更大的填充因子和较好的光电转换。用其制得的太阳能电池在低光强下具有很高的转换效率,光电性能实验结果表明,用本发明所得薄膜制得的太阳能电池,在5mW/cm2的弱光照下,光电转化效率高达11.83%,尤其适合在日照强度低的地区使用。
西南交通大学 2016-06-27
一种用于钠离子电池的负极材料及其制备方法
本发明公开了一种钠离子电池负极材料,其特征在于,该电极 材料为碳和硫形成的复合材料,其中,所述复合材料中的碳由芳香族 化合物碳化热解得到,该复合材料中的硫可以是以单质硫形式,碳硫 键形式或氧硫键形式存在,或者其中的多种形式存在。本发明还公开 了一种钠离子电池电极材料的制备方法技巧应用。本发明的材料用作 钠离子电池负极具有高的比容量和良好的循环稳定性的特点,其制备 方法简单,原料来源广泛,成本低廉,绿色环保,安全无害。
华中科技大学 2021-04-14
一种全天候除霾光电池板装置
二氧化硫、氮氧化物以及可吸入微小入颗粒物是雾霾的主要组成部分,随着环境污染问题的日渐严峻,雾霾已经成为很多地区人们倍加关注的污染重点,如何减少雾霾对人们健康的危害,是当前净化空气研究的重要课题。现有吸霾光电池板是利用二氧化钛活性材料做光触媒,喷涂在光电池板的表面形成光触媒净化膜,该吸霾光电池板在高效光伏发电的同时起到净化局部环境的作用。 光触媒净化膜的核心成分锐钛矿相纳米TiO2受日光照射后生成氢氧自由基,与空气中有机物质反应后既生成无毒的无机物,高效分解甲醛、苯、氨气等,将其转化成CO2和H2O,氧化去除大气中的氮氧化物、硫化物,以及各类臭气。但其受限于紫外光照,现有吸霾光电池板在雾霾严重时,由于光强不足,使光触媒净化效率大打折扣;而且在夜晚无光照情况下,吸霾光电池也不能起到消减雾霾影响的作用。此外,长期放置在室外的吸霾光电池板的板面很容易积灰尘,灰尘会影响到太阳能电池板上光线的穿透率,也降低了光电转化效率。 本成果提供了一种可根据外界光强条件进行灯光补偿,实现全天候工作,同时自动除尘,以提高空气净化效率和发电效率的全天候除霾光电池板装置。 创新点 1、风光互补,自动除尘; 2、可根据外界光强条件进行灯光补偿,实现全天候工作,提高空气净化效率和太阳能光电板发电效率。
华北电力大学 2023-08-22
晶体硅太阳能电池产业化及应用产品开发
欧洲太阳能协会主席赫尔曼・舍尔博士日前认为,世界经济应该从依靠矿物资源向太阳资源转变,太阳型世界经济将推动第二次工业革命 。太阳能发电是一项高新技术,以太阳能为资源基础的生产将是一种可持续的发展模式从阳光直接转变成电流的太阳电池也将不再是昂贵的市场空缺。全球太阳能产品的年销售额达14亿美元,其中12亿美元来自太阳能电池的销售。太阳能工业的年增长率估计在20
西安交通大学 2021-01-12
首页 上一页 1 2
  • ...
  • 47 48 49
  • ...
  • 709 710 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1