高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
技术需求:燃烧技术提升燃气灶热效率
燃烧技术提升燃气灶热效率;就金属耐高温材料、陶瓷材料、涂层材料、复合材料等方面技术,来降低材料成本、提高产品寿命。
山东新泰秋实节能科技有限公司 2021-08-23
单根电线电缆垂直燃烧试验机
产品详细介绍 单根电线电缆垂直燃烧试验机 基本简介: 1、单根电线电缆垂直燃烧试验是GB/T18380.11-2008、GB/T18380.12-2008、GB/T18380.21-2008,GB/T18380.22-2008、 IEC60332-1 、 GB/T5169.14-2007 等标准规定的模拟单根电线电缆燃烧性能安全试验项目。 2、单根电线电缆垂直燃烧试验是采用规定尺寸的本生灯 (Bunsen burner) 和特定燃气源 ( 丙烷 ) ,按一定的火焰高度和一定的施焰角度对呈垂直状态的试品定时施燃,以试品点燃、燃烧的持续时间和燃烧长度等来评定其可燃性及着火危险性。3、单根电线电缆垂直燃烧试验仪主要针对导体直径大于8mm(截面积大于0.5mm2)或小于8mm(截面积小于0.5mm2)的单根电线电缆的可燃性能进行评定。适用于照明设备、低压电器、家用电器、机床电器、电机、电动工具、电子仪器、电工仪表、电气连接件和辅件等电工电子产品及其组件部件的研究、生产和质检部门。 技术参数: 1、 燃烧器:内径Φ12mm ± 0.5mm(符合GB/T18380.11)及内径Φ9.5mm ± 0.5mm(符合GB/T18380.21)本生灯各一个 2、 试验倾角: 45°3、 火焰高度:20mm ± 2mm 到190mm±1mm可调4、 施焰时间: 0-999.9s±0.1s可调 5、 持焰时间: 0-999.9s±0.1s,自动记录,手动暂停6、 燃烧气体: 95% 丙烷气( 一般情况可采用液化石油气代替 )7、 流量压力:带双流量表及压力表(燃气及空气)8、 温度测试范围:0~1000℃9、 火焰温度要求:从100℃±5℃升到700℃±3℃的时间在45秒±5秒之内10、测温热电偶:Φ0.5mm进口铠装热电偶(K型)11、试验过程:试验程序自动控制,无独立抽风12、适用标准:GB/T18380.11-2008、GB/T18380.12-2008、GB/T18380.21-2008, GB/T18380.22-2008 13、单根电线电缆垂直燃烧试验机箱体材料:不锈钢机箱 14、工作室尺寸:300x450x1200mm(0.16立方),不带工作室门 15、设备外尺寸:600mm宽×450mm深×1450mm高 单根电线电缆垂直燃烧试验机
欧美奥兰仪器有限公司 2021-08-23
非常规平面信号交叉口优化控制技术
非常规交叉口的通行模式是在交叉口上游设置预信号,组织左转和直行车流交替使用进口道来提高通行能力,是一种对策交叉口拥堵的新思路。其虽已在我国数个城市有过实际应用案例,但多由于缺乏坚实的理论和技术支撑而不得不以失败告终。本团队将基于自身既有的非常规交叉口理论研究成果,构建非常规交叉口的失效概率模型,建立预防死锁、动态启用和动态控制的机制与优化方法;此外,基于驾驶行为和选择偏好研究,设计综合考虑驾驶员适应性和车道排队均衡的动静态交通语言系统。本项目研究前期已经发表8篇相关论文,取得1项国家发明专利和1项软件著作权,在此基础上将通过与优秀的企业、单位合作,以面向应用为目的,一方面继续深化成果的科学性和实用性,另一方面,实现成果的推广应用,为研究机构,交通规划、设计和管理领域提供新的技术支撑,为预防和缓解交通拥堵提供有效的应用系统,解决实际交通问题的同时,服务于整体交通系统品质的提升。 在资源、环境等多约束下,相对于道路拓宽等传统手段,非常规交叉口方案是更具可持续性、更有前景的交通拥挤对策手段。本项目研究成果既能够为是否选择非常规交叉口通行模式提供理论支持,也能为非常规交叉口的优化设计提供技术支撑,因而成果可以广泛地应用于城市道路交通设计和拥挤管理之中。研究成果还可以为起草考虑非常规交叉口通行模式的交叉口规划设计规范,为缓解交通阻塞,提高交通系统的稳定性与可靠性提供理论基础和技术支持。进一步,设计的软件可以直接应用于非常规交叉信号设计方案的制定。最后,在此基础上形成的交叉口交通流分析、实验和优化技术,对于研究复杂交通系统问题具有广泛的应用效果。  图1 非常规交叉口通行模式示意图    A: 预信号控制                           B: 主信号控制图2 上海共和新路临沂路非常规交叉口   本研究的内容是交通工程领域里出现的新问题,以非常规交叉口的适应条件和优化方法为重点,以预防和缓解交通拥挤、提高通行能力和节能减排等应用为理论研究的导向。项目研究所转化的成果具有可观的经济、社会效益,主要包括: 1)成果可服务于研究机构:促进对交叉口新型通行模式的探索及其适应性分析、优化设计理论与方法的研究及应用; 2)成果可服务于交通规划、设计和管理领域:成果将为非常规交叉口的规划设计规范奠定基础;为非常规交叉口交通设计、管理实践提供新的技术支持,并在交通拥挤管理的实践中发挥重要作用; 3)成果可服务于系统开发与咨询机构:为基于新模式的交通控制、交通设计咨询和辅助系统开发提供技术指引。
同济大学 2021-04-11
立式180°双口高压气阀SAN-23201H
主体:优质铜材 涂层:高亮度环氧树脂涂层,耐腐蚀,防紫外线辐射 阀体:不锈钢针阀,高精度调节 旋钮把手:高强度PP,耐腐蚀,人体工学设计,手感舒适 开启方式:旋转式 测试耐压:17bar/1700Kpa 额定耐压:10bar/1000Kpa
上海台雄工程配套设备有限公司 2021-02-01
一次性肺活量粘口纸吹嘴
产品详细介绍测试肺活量专用一次性纸吹嘴,可以配用各种品牌的肺活量测试仪器。质量可靠,量大有优惠. 
北京宇诚博源科技有限公司 2021-08-23
锅炉燃烧节能减排自寻优控制系统
成果介绍锅炉燃烧优化控制系统的主要任务是通过细化分配各层燃烧器的煤量、不同层(高度)的风量及确定最佳风煤比等手段,提高锅炉燃烧效率,降低SCR入口烟气NOx含量,并消除锅炉燃烧过程中所存在的问题。技术创新点及参数本锅炉燃烧节能减排自寻优控制系统,主要包括如下功能:“一次风风压自寻优控制”、“一次风风量自寻优控制”、“二次风风量自寻优控制”、“氧量自寻优控制”、“二次风小风门开度自寻优控制”等,应用后可实现:⑴ 降低烟气中飞灰含碳量、CO值;⑵ 在不增加飞灰含碳量的前提下,减少SCR入口处NOx含量;⑶ 消除锅炉燃烧过程中所引起的壁温超温问题;⑷ 消除左右侧烟道烟温偏差问题;⑸ 尽可能减少排烟损失;⑹ 总体可降低煤耗1.5g/kwh以上。
东南大学 2021-04-11
锅炉燃烧节能减排自寻优控制系统
锅炉燃烧优化控制系统的主要任务是通过细化分配各层燃烧器的煤量、不同层(高度)的风量及确定最佳风煤比等手段,提高锅炉燃烧效率,降低SCR入口烟气NOx含量,并消除锅炉燃烧过程中所存在的问题。 本锅炉燃烧节能减排自寻优控制系统,主要包括如下功能:“一次风风压自寻优控制”、“一次风风量自寻优控制”、“二次风风量自寻优控制”、“氧量自寻优控制”、“二次风小风门开度自寻优控制”等,应用后可实现:⑴ 降低烟气中飞灰含碳量、CO值;⑵ 在不增加飞灰含碳量的前提下,减少SCR入口处NOx含量;⑶ 消除锅炉燃烧过程中所引起的壁温超温问题;⑷ 消除左右侧烟道烟温偏差问题;⑸ 尽可能减少排烟损失;⑹ 总体可降低煤耗1.5g/kwh以上。 本项成果已成功应用于国家电投平圩、华能左权、华能安源、华能玉环、华能井冈山、国信射阳港等电厂近20台亚临界和超(超)临界机组的锅炉燃烧优化控制中,得到了用户的一致好评。
东南大学 2021-04-13
化石燃料燃烧氮氧化物超低排放控制技术
化石燃料燃烧氮氧化物超低排放控制技术:系统研究了动力锅炉炉内再 燃/先进再燃及选择性非催化还原技术;针对传统钒基催化剂脱硝温度窗口窄、 钒易挥发、有毒等问题,开发了多种中低温铁基选择性催化还原脱硝催化剂;在 常规铁基催化剂和新型磁性铁基催化剂进行了系统研究,有望形成一种中低温铁 基选择性催化还原新技术;并对动力装备选择性催化还原脱硝技术中喷氨优化进 行了相关研究,以克服氮氧化物超低排放时氨逃逸及空预器堵塞等问题;目前, 围绕新型选择性催化还原脱硝催化剂申请相关发明专利 7 项,授权 3 项。
上海理工大学 2021-01-12
一种煤粉低 NOx 富氧燃烧装置
本发明公开了一种煤粉低 NOx 富氧燃烧装置,包括炉膛、氧气罐、氧化剂喷嘴、中心喷嘴、蒸气喷嘴和蒸气发生器,中心喷嘴安装在炉膛的一侧;一次风管道的侧壁通过一次蒸气进气管道与蒸气发生器的出口连接;氧化剂喷嘴安装在炉膛上与中心喷嘴相同的一侧;氧化剂喷嘴的出口伸入炉膛内,其进口连接二次风管道,二次风管道通过二次蒸气进气管道与所述的一次蒸气进气管道连接,二次风管道的侧壁通过氧气进气管与氧气罐连接;蒸气喷嘴安装在炉膛上与中心喷
华中科技大学 2021-04-14
大型电站锅炉生物质与煤粉混合燃烧技术
随着全球能源短缺、环境污染问题的日益严重,各个国家都在加紧可再生能源的开发和利用。风力发电是目前最经济、最清洁、最容易实现大规模生产的。随着科技水平的发展,大功率的风力发电机在我国逐渐推出,而它们基本都是原型机,未经时间考验。通过风力机塔架的三维有限元强度、振动与疲劳寿命分析,可以保障机组的安全运行。 本项目采用三维非线性有限元方法,考虑风力机塔架在各种工况下的载荷,计算分析风力机塔架的强度、振动和疲劳寿命。
西安交通大学 2021-04-11
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 17 18 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1