高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
储压式气体、粉尘爆炸抑爆装置
目前,爆炸性气体、粉尘场所 按消防要求装备手提式干粉灭火器和推车式干粉灭火器,有些安装有水喷淋管路系统。这些消防装备和设施对于控制快速发展(毫秒级)的 气体、粉尘 爆炸,无能为力。 储压式气体、粉尘爆炸抑爆装置 由探测器、控制器及抑爆器组成,安装在爆炸源附近 ,当发生气体、粉尘时, 探测器 接收到爆炸信号,传送至控制器,控制器产生触发电压,使抑爆器动作,快速打开抑爆器内的高压氮气,高压氮气引射抑爆器内的高效灭火剂喷出,形成足够浓度的灭火剂粉雾体,扑灭 气体、粉尘 爆炸火焰,防止气体、粉尘爆炸的发生、发展。
西安科技大学 2021-04-11
异构界面爆炸复合板的制备技术
成果创新点 主要技术创新路径:首先在金属板上精确车铣出所需 异构界面,然后根据爆炸焊接相关理论计算出制备过程所 需的全部参数,最后在指定的环境下进行爆炸复合操作。 关键技术指标:异构界面形状尺寸确定、焊接参数的合 理选择、精确定位及对复板飞行姿态的控制。 核心解决问题、核心优势:解决了物理化学性质相差 很大的金属板材之间的复合,同时异构界面增加了金属板 材间的结合面积,提升了结合强度。
中国科学技术大学 2021-04-14
异构界面爆炸复合板的制备技术
主要技术创新路径:首先在金属板上精确车铣出所需异构界面,然后根据爆炸焊接相关理论计算出制备过程所需的全部参数,最后在指定的环境下进行爆炸复合操作。 关键技术指标:异构界面形状尺寸确定、焊接参数的合理选择、精确定位及对复板飞行姿态的控制。 核心解决问题、核心优势:解决了物理化学性质相差很大的金属板材之间的复合,同时异构界面增加了金属板材间的结合面积,提升了结合强度。
中国科学技术大学 2023-05-16
称重式液面位置的检测物块、装置及检测方法
已有样品/n本发明涉及一种称重式液面位置的检测物块、装置及检测方法,该称重式液面位置的检测方法,包括以下步骤:将电子秤位置高度固定,通过不可拉伸的固定长度挂线将检测物块浸入待检测液体中;待检测液面在检测物块上部的中间位置;记录电子秤的读数F1;当电子秤的读数变化时,记录电子秤的读数F2;根据电子秤的读数变化,计算液面位置的变化。该检测方法用于汽车发动机气体喷嘴流量特性试验,该检测方法检测精度高,易于操作,即使微小的液面位置变化也能检测出来。
武汉理工大学 2021-04-11
高能量利用率的爆炸焊接技术
成果创新点 主要技术创新路径:传统爆炸焊接的装置,其上表面 裸露在空气中。而本技术在炸药上表面对称地放置与炸药 下表面一致的复板和基板,整体作为一个单元;为避免上 半部分抛掷出去,因而重复该单元,让炸药冲击互相约束; 最顶部不能再铺设复板与基板,因而以胶体水替代,能提 高其能量利用率。 关键技术指标:各层炸药同步起爆、间隙及炸药配方 和用量; 核心解决问题、核心优势:解决了
中国科学技术大学 2021-04-14
高能量利用率的爆炸焊接技术
主要技术创新路径:传统爆炸焊接的装置,其上表面裸露在空气中。而本技术在炸药上表面对称地放置与炸药下表面一致的复板和基板,整体作为一个单元;为避免上半部分抛掷出去,因而重复该单元,让炸药冲击互相约束;最顶部不能再铺设复板与基板,因而以胶体水替代,能提高其能量利用率。 关键技术指标:各层炸药同步起爆、间隙及炸药配方和用量; 核心解决问题、核心优势:解决了爆炸焊接工业生产中的成本和效率问题,实验证明五层的该结构可以提升能量利用率 63%,且该技术多块板一次成型,大大提高了工作效率;
中国科学技术大学 2023-05-16
化学污染物快速检测及安全控制技术
一、成果简介 要控制食品安全问题,就需要从农田到餐桌对食品的生产、加工、流通和销售等各个环节进行全程监控和管理。而现有的食品安全监督管理体系普遍建立在仪器分析的基础之上,不仅人力、物 力消耗大,时间成本高,而且信息发布滞后,导致监管部门很难对问题食品进行快速反应。因此,迫切需要大量能够满足现场、快速、准确、灵敏且成本低廉的食品安全分析检测技术。试纸成为了 一个非常令人关注的检测平台,
中国农业大学 2021-04-14
疾病相关表观标志物定量检测系统
“疾病相关表观标志物定量检测平台”基于“质量取决于设计”的研发理念,以“一体化、数字化、小型化”为目标,采用独特的生物信息通路设计,实现基于基因捕捉富集分离的样本分离技术与定量 PCR 检测技术的优化组合(一体化); 在样本分离、检测等各个环节设立多重质控体系, 以数字化实现结果自动呈现,并定量实时呈现质控数据,精准监控结果(数字化)。填补 了国际市场上从单个到全基因组之间存在巨大的空白,易于操控,适用于普通实验室(小型化)。
北京交通大学 2023-05-08
人才需求:弹药工程与爆破技术、爆炸及应用
弹药工程与爆破技术、爆炸及应用计算机软件工程国际贸易
山东银光科技有限公司 2021-08-23
关于超精细颗粒物检测的应用研究
当颗粒物尺寸进入纳米尺度量级时,其极低的极化率使得实现高灵敏度的快速便捷检测变得困难重重。基于光学方法的传感技术具有非物理接触、非破坏、抗电磁干扰、易于操作且灵敏度高等特点,成为高灵敏传感研究的热门方向之一。传统光纤传感器已经在高灵敏检测领域得到了广泛应用。近年来的研究表明:当光纤直径减小至光波长量级时,光纤外部存在显著的倏逝场,其尺度大约在百纳米量级,对周围环境的微弱变化极为敏感。研究团队利用颗粒物在纳米光纤倏逝场中的散射效应,实现了超细颗粒物的传感与尺寸分布测量。 该项工作中,课题组首先计算了散射效率与散射体尺寸和光纤直径的关系,预测了纳米光纤传感器的最优尺寸和探测极限;随后根据理论预测,进行了高灵敏度的纳米光纤阵列的设计和制备,利用串联的纳米光纤大大提高了传感器的传感面积和检测效率;通过优化光纤模式,研究人员实现了单个标准聚苯乙烯纳米颗粒的传感和测量,粒径分辨率达10纳米。 进一步,考虑到空气中百纳米尺寸级别的细颗粒物的穿透性更强,对于人体具有更大的危害(如图1),而公开的细颗粒物质量浓度数据(PM2.5)无法对此进行有效评价,实时快速测量细颗粒物的粒径分布信息对于空气质量的评价更具有指导作用。课题组利用光纤传感器对2015年和2016年北京冬季大气细颗粒物进行了持续监测,直接获得了百纳米尺度细颗粒物的粒径分布信息,计算得到的细颗粒物浓度数据与官方公布数据趋势符合良好(如图2),充分展示了此成果的应用价值。图2. 基于纳米光纤的大气质量监测。a,空气颗粒物粒径分布及其实时演化;b,空气颗粒物质量浓度(PM1.0)及官方数据(PM2.5)。空气样品实时采集于北京大学物理学院院内。
北京大学 2021-04-11
首页 上一页 1 2 3 4 5 6
  • ...
  • 241 242 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1