高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
面向海上风电机组、海洋装备及船舶的腐蚀防护新技术
本成果是基于新材料和高速激光熔覆的海上风电机组、海洋装备和船舶的长效、环保防腐新技术。针对海上风电机组、海洋装备和船舶的海水腐蚀问题,突破了现有防护期效短(防腐涂料期效一般为1—5年)、涂层易剥落以及涂料中所含有机化合物(VOC)污染环境的局限性,自主开发了激光熔覆用高性能耐蚀合金粉末材料和制备高耐蚀熔覆层的高速激光熔覆系统,利用高速激光熔覆技术在海上风电机组、海洋装备和船舶的重要部件上制备超长寿命(≥50年)的耐蚀熔覆层,从根本上解决重要部件全寿命周期内腐蚀防护问题。该项技术的成熟度达到8级,具备批量生产条件。已获授权发明专利20余项、授权GF发明专利2项。 创新点 1、研发了系列专用于高速激光熔覆的镍基高性能耐蚀合金粉末材料。 2、开发了基于高速激光熔覆的耐蚀层制备技术与装备,防腐层与基体冶金结合(结合强度≥200MPa)。 3、提供了一种长效、环保的腐蚀防护新技术,材料不含VOC及其他有毒化合物,耐蚀寿命≥50年。 市场前景 腐蚀使全球每年损失的钢铁约6000万吨,随着我国海洋经济迅猛发展,我国海洋工程95%的材料都是钢铁或钢筋混凝土,海洋工程防腐已成为发展中急需解决的重要课题。我国已成为世界海洋涂料使用量第一的国家,2010年我国海洋涂料市场规模已超350亿元,海洋涂料的需求量年均增速超过20%。目前防腐涂料作为海上风电机组、海洋装备及船舶应用最广泛的腐蚀防护途径,但存在有效防腐期较短、所含有机化合物污染环境等问题。因此,迫切需要开发防腐效果更好、时效更长、低毒环保的新方法。 应用案例 自2017年以来,成果已应用于船舶水线以下与海水接触的钢板、压载泵大轴、尾舵及其它部件,已有的结果表明,熔覆层完全耐蚀,预计其耐蚀寿命大于50年。 获奖情况 耐蚀新材料与制备技术成果于2021年经过由中国电机工程学会组织、刘振东院士任主任委员的鉴定,鉴定结论为“该项目成果整体技术居国际领先水平”。高耐磨耐蚀新材料与熔覆层的制备关键技术入选“2016中国黑科技百强”。
华北电力大学 2023-08-03
五谷杂粮饮料(包括茶奶)的工业化技术及装备
以有机复合谷类杂粮为主要原料,采用微波烘焙、超微粉碎、冷杀菌(电磁脉冲杀菌、超高压杀菌等)及瞬时超高温杀菌等关键技术及装备对产品营养、稳定性、色香味的影响及加工研究,生产固体或液体健康饮品。 创新要点 独特的营养配方;产品的稳定性、保质期保障;不同口感、色彩;不添加化学合成添加剂。
江南大学 2021-04-11
机械装备关键零部件的再制造、修复与加工
本项目主要为企业提供机械装备关键零部件的修复和加工工艺等关键技术, 通过激光熔覆、热喷涂等技术优化了再制造产品修复的工艺参数,提高修复层 的性能,实现修复层的精密低应力平整化加工,提高修复产品的表面质量,形 成薄壁、弱刚性零件辅助加固高效高精度加工技术,降低加工过程中产生的振 动,避免出现加工变形,为企业进行机械产品再制造提供技术支持。
山东大学 2021-04-13
微生物基因工程可溶性表达及产物后加工新技术
本项目面对行业世界性技术难题,解决大肠杆菌包涵体产物妨碍重组蛋白质药物生产的问题;建立我国自主知识产权的基因工程表达载体和体系。本项目通过深入了解蛋白质折叠过程、建立了微生物可溶性表达及后加工技术体系,通过多环节调控蛋白质折叠的策略,有效解决大肠杆菌包涵体难题,高效率低成本生产重组蛋白质药物。在生产环节发明了多种基因工程高效表达和不同层次助溶新技术及其整合;在制备环节发明了基因工程表达产物分离纯化及后加工新技术及其集成。本项目获8件发明专利授权、含1件美国专利,专利全部获得实施许可。本项目技术在美
南京大学 2021-04-14
高品质“八公山”豆腐乳加工关键技术攻关及产品制备
成果简介:本草纲目记载:“豆腐之法,始于淮南八公山”, 八公山豆腐乳是安徽特产,也是我国传统特色调味食品。食品 工业作为我国第一产业具有重要地位,传统食品是中华民族智 慧结晶,更是中华五千年璀璨饮食文化的特色载体,但在国内 外市场竞争中,恰缺乏高品质“八公山”豆腐乳产品。 传统大豆食品营养丰富,保健价值高,豆腐乳由于具有微 生物的作用,不仅营养丰富,且具有降低胆固醇、降血压、降
合肥工业大学 2021-04-14
高性能龙门加工中心整机设计与制造工艺关键技术及应用
建立了龙门加工中心几何误差整机-部件-零件-结构的精度正向递推分配、精度保持薄弱结构-零件-局部动件-整机的精度逆向修正补偿方法,提升了龙门加工中心大行程工况加工精度要求 一、项目分类 关键核心技术突破   二、成果简介 高性能龙门加工中心是航空航天、高铁船舶、核电等大型精密零件加工的重要装备。高性能龙门加工中心设计研发中遇到了多部机型谱匹配、大行程精度均衡、大惯量爬行抑制等三大技术难题,急需新的设计方法与制造工艺的支撑。在国家科技重大专项等课题资助下,浙江大学谭建荣院士科研团队开展了高性能龙门加工中心整机设计与制造工艺关键技术及应用研究,取得了一系列重要成果: (1)发明了高性能龙门加工中心整机布局方案骨架型谱。建立了多部机匹配的龙门加工中心布局方案骨架型谱,揭示了龙门加工中心多体系统低序体阵列拓扑约束解耦机理,提升了龙门五面加工中心、数控龙门镗铣床等一体化龙门框架多部机布局型谱自适应匹配性能,一阶固有频率由54Hz提高到63Hz,结构件刚度由50.4N/μm提高到55.6N/μm,打破了国外大型精密动梁五面体龙门加工中心垄断。 (2)发明了基于螺旋变换的多轴联动精度分配方法。建立了龙门加工中心几何误差整机-部件-零件-结构的精度正向递推分配、精度保持薄弱结构-零件-局部动件-整机的精度逆向修正补偿方法,提升了龙门加工中心大行程工况加工精度要求,X/Y/Z轴行程定位精度由0.08/0.06/0.05mm提高到0.03/0.02/0.015mm,整机几何精度达到发达国家同类产品Ⅰ级标准。 (3)发明了龙门加工中心运动部件爬行特征判定方法。建立了基于动梯度粘滑特性的动件爬行特征判定方法,揭示了大惯量动件重载负荷低速摩擦副防爬机理,提升了重载低速大范围的静压导轨低摩擦副高精度控制性能,加工工件表面粗糙度从Ra0.4提升至Ra0.2,转台平面跳动由0.02mm提高到0.01mm,转台热浮升变形由0.2mm提高到0.05mm。 研制了行业首创的龙门加工中心设计制造工具集,在国家重大工程的关键部件精密加工中得到成功应用,并推广应用到国家重点机床企业的高端加工中心设计研发中。项目突破了发达国家对我国龙门加工中心技术封锁,研发的机床产品成功替代进口,对提高我国重大精密装备国产化率与自主创新能力等起到了重要作用。
浙江大学 2022-07-22
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数控机床加工相比还能有效降低企业设备采购与维护成本。 应用领域: 核聚变、空间光学、天文光学望远镜、光学镜头等涉及光学元件制造行业 技术指标: ? 实现直径1米的大口径光学元件磨抛加工; ? 直径500mm的平面反射镜有效口径范围面形精度达到PV=0.387λ、rms=0.063λ。
电子科技大学 2021-04-10
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数
电子科技大学 2021-04-10
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
成果简介: 国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数控机床加工相比还能有效降低企业设备采购与维护成本。 应用领域: 核聚变、空间光学、天文光学望远镜、光学镜头等涉及光学元件制造行业 技术指标: 实现直径1米的大口径光学元件磨抛加工; 直径500mm的平面反射镜有效口径范围面形精度达到PV=0.387λ、rms=0.063λ。
电子科技大学 2017-10-23
微生物/生物技术/海洋/特种药物研究NMT工作站
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “生物安全,人人有责” 推出背景: 在国际竞争白热化,战争形态多样化的今天,生物安全已成为国家安全的重要组成部分,为积极应对这一挑战,2019年10月,生物安全法草案于首次提请十三届全国人大常委会第十四次会议审议。本次新冠肺炎疫情的爆发,让各界更加意识到,生物安全对于确保国家安全、保障社会稳定、人民群众生命安全和身体健康的重要性。 国家安全就是国家竞争,归根结底又是科技实力的竞争!因此,作为中国的高新技术企业,中关村NMT联盟的会员单位,旭月(北京)科技有限公司利用20多年的技术积累,以NMT:非损伤微测技术为底层核心技术,迅速推出了与国家生物安全相关多种检验,监测仪器设备,以及适用于多个学科及领域的研发平台: 《NMT生物安全创新平台》特制系列产品!   应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 分类及用途: 1)《微生物药物研究NMT工作站》(型号:NMT-MDR-100) 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   2)《微生物药物研究NMT工作站》(型号:NMT-MDR-200) 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   《微生物药物研究NMT工作站》(型号:NMT-MDR-100) 应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   参数: 1.基本功能: 1.1针对微生物药物研究设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、NH4+、Ca2+、Mg2+、Cl-、O2、H2O2 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速 《微生物药物研究NMT工作站》(型号:NMT-MDR-200) 应对挑战: 1)微生物检测:微生物的生长繁殖及代谢过程,为微生物的药物研究提供了方向,NMT对微生物如细菌、真菌、微藻的分、离子流速检测,能够快速确定微生物生长过程中的产物,有效地对微生物药物进行确定及筛选。 2) 安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   参数: 1.基本功能: 1.1针对微生物药物研究和研发设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、NH4+、Ca2+、Mg2+、Cl-、O2、H2O2 1.4可实时监测和记录检测时的环境参数:温度、湿度、大气压、海拔、经纬度 1.5配备新指标拓展功能 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速,以及检测时的环境参数
旭月(北京)科技有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 954 955 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1