高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
UV-固化PVC扣板涂料
UV-固化涂料是由紫外光固化的涂料,在我国是90年代初才发展起来的新型涂料。这种涂料有两个显著的特点:一是所有组分100%固化,没有挥发性溶剂,被称为绿色涂料,不污染环境。二是在紫外灯下几秒种就能固化,省时省工,节约能源,占用空间小,非常适合大工业化的自动流水生产线,被广泛用于PVC扣板、宝丽板、地板、门板、家具等建筑装饰材料的表面涂覆,实属高新技术产品,
西安交通大学 2021-01-12
GM3硬质墙体保温涂料
我国的多层居民建筑,目前,大多尚未注意到保温隔热问题。而不断增多的高层建筑,由于不准使用实心粘土砖,如果采用整体浇注的水泥板墙(剪力墙),则不得不考虑墙体保温问题。现在的外墙保温,大多是在外墙内侧用钉子挂住矿棉板,外面敷以钢板网,网上再抹一层约20mm厚的砂浆。这样做保温效果尚可,但钢板网上面这一层砂浆,则较难施工,易开裂、剥落,而且整体造价高。近来,也有
西安交通大学 2021-01-12
灰常好——零碳无机涂料
一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 学号 孙文萱 环境工程 2021年 202131043118 张慧敏 国际经济与贸易 2020年 202031100409 张靖宜 国际经济与贸易 2020年 202031100430 马亮 经济学 2020年 202031100251 王冰冰 环境工程 2021年 202131043201 刘思怡 化学工程与工艺 2021年 202131042204 王芊蕙 应用化学 2021年 202131041304 林静媛 广播电视编导 2021年 202131153132 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 张连红 化学化工学院 教授 绿色化工与废弃物资源化 徐余跃 经济管理学院 讲师,团委办公室 四、项目简介 灰常好为一款新型纯无机涂料,本产品采用无机纳米改性硅溶胶技术、独立成膜技术,并将改性粉煤灰作为功能填料加入其中,不仅在防火阻燃、耐擦洗易清洗、抗菌防霉、抗碱抗水特性、抗缩涨剥离、保色性等方面性能优越,同时不含有有机大分子组分,不会释放voc等有毒物质,真正做到了绿色健康环保。
西南石油大学 2023-07-20
纳米增韧耐磨海洋污涂料
海洋生物污损,是指藤壶、贻贝、藻类等海洋生物在船舶、海底电缆、海上平台等浸没表面的附着生长现象。看似微小的生物群落,实则危害巨大:它们会增加船舶航行阻力,导致燃油消耗激增(据统计,全球船舶因污损每年多消耗约7000万吨燃油);会堵塞海底光缆、油气管道,影响通信与能源传输的稳定性;更会干扰海洋探测设备的精度,甚至导致勘探数据失真。传统应对方式依赖定期人工清理或使用含锡、铜等重金属的防污涂料,但前者成本高昂(大型船舶每年维护费用超百万元),后者则面临环保法规收紧(国际海事组织IM0已逐步限制有毒防污剂使用)的严峻挑战。 技术突围:中科院纳米所"纳米增韧耐磨海洋污涂料"的颠覆性创新 面对这一全球性难题,中国科学院苏州纳米技术与纳米仿生研究所给出了"中国方案"——其研发的"纳米增韧耐磨海洋污涂料",以纳米技术为核心,突破了传统防污涂料的性能瓶颈,为海洋装备防护提供了长效、环保、经济的解决方案。 传统防污涂料常面临"防污期短"与"易脱落"的两难:为增强附着力,需提高漆膜硬度,但硬度过大会导致柔韧性不足,在复杂工况(如卷绕、弯曲)下易开裂;若降低硬度提升柔韧性,又易被水流冲刷脱落,防污效果难以持久。 中科院团队创新性地引入纳米复合增韧技术,通过构建"纳米颗粒-有机基质"互穿网络结构,大幅提升了漆膜的力学性能:一方面,纳米颗粒(如二氧化硅、碳纳米管等)均匀分散在树脂基体中,形成"应力分散点",有效抑制漆膜在弯曲、拉伸时的裂纹扩展,使漆膜耐弯折性提升3倍以上;另一方面,纳米级的交联结构增强了分子间作用力,漆膜硬度可达2H以上(传统防污涂料多为HB-H),高压强下(如深海高压环境)仍保持完整。这一突破彻底解决了"防污"与"耐用"的矛盾,让涂料在长期浸泡、机械形变等复杂条件下仍能稳定发挥防污功能。 成果发布于:2025 年 7 月
中国科学院大学 2021-01-12
高性能特种粉体材料近终成形技术
该项目属于粉末冶金学科。高性能特种材料具有其他材料不具备的特殊性能,在高技术领域中具有不可取代的关键作用。然而,这类材料往往硬度高、脆性大,难以采用传统技术加工制备,成为许多国防和民用高技术装备发展的瓶颈。为此,项目基于粉体流变成形原理,研发了难加工材料的近终形制造新技术,广泛应用于国防和民用高技术领域。
北京科技大学 2021-02-01
聚醚醚酮特种纤维制备技术与应用
1、聚醚醚酮特种纤维制备技术 聚醚醚酮纤维具有高强度、高韧性、耐高温、耐化学腐蚀、阻燃和耐辐照等综合性能,被誉为综合性能最优异的热塑性芳香族聚合物纤维。项目团队于2006年开始自主研发,成功实现PEEK特种纤维的生产及应用,使我国成为世界上第二个采用自主知识产权生产PEEK纤维的国家,整体技术达到国际先进水平。 成果成熟度:可产业化。 应用领域及市场前景 本项目目前已实现产业化,产品可应用于航空航天、武器装备和民用高技术领域,主要应用制品为过滤网、过滤布、电束线管和混编复合材料等。PEEK纤维断裂强度较国外产品提高60%以上,可在-60~240℃长期使用,纤维的价格仅为国外产品的1/2 左右。 2、聚醚醚酮碳纤维上浆剂制备关键技术 利用可溶性聚芳醚酮前驱体对纤维进行上浆处理,再经水解处理,使可溶性聚芳醚酮上浆剂还原成为结晶性,实现结晶性聚芳醚酮对纤维的上浆处理。 经其上浆的碳纤维增强聚芳醚酮复合材料的界面剪切强度(IFSS)达到了83.1 MPa,相比原来的碳纤维增强聚芳醚酮复合材料提高91.5%,界面作用效果非常显著,复合材料在湿热环境中依旧保持有很高的界面性能。 成果成熟度:可产业化。 应用领域及市场前景:专业针对聚芳醚酮基复合材料(目前最火的热塑性碳纤维复合材料)碳纤维上浆剂,前景潜力巨大。
吉林大学 2021-05-11
聚醚醚酮特种纤维制备技术与应用
项目成果/简介:1、聚醚醚酮特种纤维制备技术聚醚醚酮纤维具有高强度、高韧性、耐高温、耐化学腐蚀、阻燃和耐辐照等综合性能,被誉为综合性能最优异的热塑性芳香族聚合物纤维。项目团队于2006年开始自主研发,成功实现PEEK特种纤维的生产及应用,使我国成为世界上第二个采用自主知识产权生产PEEK纤维的国家,整体技术达到国际先进水平。成果成熟度:可产业化。应用领域及市场前景本项目目前已实现产业化,产品可应用于航空航天、武器装备和民用高技术领域,主要应用制品为过滤网、过滤布、电束线管和混编复合材料等。PEEK纤维断裂强度较国外产品提高60%以上,可在-60~240℃长期使用,纤维的价格仅为国外产品的1/2 左右。2、聚醚醚酮碳纤维上浆剂制备关键技术利用可溶性聚芳醚酮前驱体对纤维进行上浆处理,再经水解处理,使可溶性聚芳醚酮上浆剂还原成为结晶性,实现结晶性聚芳醚酮对纤维的上浆处理。 经其上浆的碳纤维增强聚芳醚酮复合材料的界面剪切强度(IFSS)达到了83.1 MPa,相比原来的碳纤维增强聚芳醚酮复合材料提高91.5%,界面作用效果非常显著,复合材料在湿热环境中依旧保持有很高的界面性能。成果成熟度:可产业化。应用领域及市场前景:专业针对聚芳醚酮基复合材料(目前最火的热塑性碳纤维复合材料)碳纤维上浆剂,前景潜力巨大。技术先进程度:达到国际先进水平
吉林大学 2021-04-10
高性能特种粉体材料近终成形技术
该项目属于粉末冶金学科。高性能特种材料具有其他材料不具备的特殊性能,在高技术领域中具有不可取代的关键作用。然而,这类材料往往硬度高、脆性大,难以采用传统技术加工制备,成为许多国防和民用高技术装备发展的瓶颈。为此,项目基于粉体流变成形原理,研发了难加工材料的近终形制造新技术,广泛应用于国防和民用高技术领域。主要发明点如下:1. 发明了高性能特种材料的粉末注射成形新工艺,实现了金属钨、氮化铝、含氮不锈钢等难加工材料制品的近终形制造;发明了专用注射成形机、侧抽芯新结构模具等关键工艺装备;创立了基于机器视觉的粉末注射成形产品尺寸和外观质量在线自动检测、工业机器人动态抓取和分拣软硬件系统,首次实现了全自动化生产和高质量稳定性控制,生产效率提高 6 倍以上。2. 首创了适合注射成形的近球形微细特种粉体制备和改性新技术。提出基于酸根离子的化学推进剂理论,创立了可控溶液燃烧合成难熔金属和氮化物反应体系和工艺,制备出粒径小于 50nm 的高分散近球形氮化铝和钨基粉体。创立了“气流分级分散-等离子球化”粉体改性技术,制备出满足精密多孔阴极需要的细粒径窄分布(5±2μm)球形钨粉。3. 发明了适合不同材料的粘结剂体系及成形和高效脱脂工艺。提出基于聚合物功能基团的多组元粘结剂设计原理,创立了两相流协调运动模型,阐明了两相分离和缺陷产生的不确定性机制,发明了残碳型、低残留型和高粘性粘结剂体系,有效解决了坯体两相分离、变形、增氧、缺陷等控制难题,产品尺寸精度达到±0.2%。4. 发明了多孔脱脂坯强化烧结致密化和组织性能精确调控技术。提出金属钨的低温无压活化烧结致密化理论和钝化处理孔隙结构精确调控技术,突破了高致密度钨的细晶化和多孔钨的孔隙均匀化技术瓶颈,烧结金属钨电极的晶粒尺寸仅 570nm,抗电子轰击性能提高 2 个数量级,多孔钨的活性物质填充量提高 20%;综合利用液相烧结和残碳“脱氧”原理,解决了氮化铝高致密化、晶界相控制和晶格净化等难题,热导率高达 248W·m-1·K-1。项目授权中国发明专利 60 项、实用新型专利 65 项,申请 PCT 专利 2 项,软件著作权 6 项,合作出版著作 5 部,发表 SCI 论文 104 篇。项目引领了粉末注射成形行业发展,建成了世界规模最大的粉末注射成形生产线。科技成果评价专家组认为:“创新性强,属于重要的军民两用技术”;“为我国国防先进武器和民用工业领域研制和生产了多种关键零件”;“应用成效明显,整体技术达到国际领先水平”。获教育部技术发明一等奖 2 项、中国有色金属工业技术发明一等奖 1项。成果推广应用于 20 余家企业,建成生产线 47 条。近三年,新增销售 54.09亿元,新增利润 7.05 亿元,多种产品解决了国防装备建设和研发的“卡脖子”问题,社会经济效益显著。
北京科技大学 2021-04-13
难加工材料的高效特种切削加工技术
Ø  成果简介:具有对新型高硬超高强度钢、不锈钢、新型复合材料、钨合金、硅铝合金和灰铸铁的精密高效切削工艺和刀具成套技术。开发了能对FMS的刀具管理和可靠性寿命进行预报,对金刚石涂层刀具薄膜与基体结合强度、新型刀具材料切削性能进行分析的系统软件以及高速孔加工刀具CAD软件系统。切削高硬超高强钢的速度可达150m/min,切削不锈钢的速度可达200m/min,提高生产效率30%。Ø  项目来源:自行开发Ø  技术领
北京理工大学 2021-01-12
难加工材料的高效特种切削加工技术
具有对新型高硬超高强度钢、不锈钢、新型复合材料、钨合金、硅铝合金和灰铸铁的精密高效切削工艺和刀具成套技术;开发有对FMS的刀具管理和可靠性寿命预报、金刚石涂层刀具薄膜与基体结合强度、新型刀具材料切削性能分析的系统软件;高速孔加工刀具CAD软件系统。切削高硬超高强钢的速度可达150m/min,切削不锈钢的速度可达200m/min。提高生产效率30%。
北京理工大学 2021-04-13
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 43 44 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1