高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
心理学院王征研究员课题组发表合作论文发现猕猴非编码基因调控大脑静息功能网络,并与人类精神疾病风险基因高度相关
近日,北京大学心理与认知科学学院、IDG麦戈文脑科学研究所、北大-清华生命科学联合中心、海南大学生物医学工程学院王征实验室与中国科学院王光中研究员合作,在Cell Reports在线发表题为“Noncoding transcripts are linked to brain resting-state activity in non-human primates”的研究论文,报道了利用实验室前期收集的猕猴全脑分区、单细胞转录组图谱和静息态脑影像数据,整合分析发现150个非编码基因与蛋白编码基因一起共同调控大脑网络在静息状态下的同步自发振荡活动。此外,这些非编码基因不仅与非神经元细胞(如少突胶质细胞)的功能有关,且与人类精神疾病如自闭症、精神分裂症的风险基因紧密关联。
北京大学 2023-08-22
羊草水孔蛋白及其编码基因与应用
羊草水孔蛋白及其编码基因与应用,目前对于羊草的研究仅限于人畜的食用及成份分析等方面,而将其作为耐旱植物对其分子生物学方面的研究还少见报道.羊草水孔蛋白,是具有以下氨基酸序列的蛋白质:(1)序列表中的SEQ IDNo:1;(2)序列表中SEQ ID No:1的氨基酸序列经过一个或几个氨基酸残基的取代,缺失或添加,且与SEQ ID No:1蛋白质序列具有相同活性的,由SEQ IDNo:1衍生的蛋白质.将本发明的水孔蛋白的编码基因转入其它植物,可增强转基因植物的抗旱能力.本发明应用于植物基因工程领域.
哈尔滨师范大学 2021-05-04
小麦耐热相关蛋白TaXPD及其编码基因与应用
本发明公开了植物耐热相关蛋白TaXPD及其编码基因与应用。本发明所提供的蛋白质为如下a1)或a2)或a3):a1)氨基酸序列是序列表中序列2所示的蛋白质;a2)在序列表中序列2所示的蛋白质的N端或/和C端连接标签得到的融合蛋白质;a3)将a1)或a2)所示的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与植物耐热性相关的蛋白质。实验证
中国农业大学 2021-04-14
非编码RNA的染色质结合机制研究
哺乳动物基因组的广泛转录产生了大量的非编码RNA,相比于细胞质定位的蛋白编码mRNA,这些非编码RNA如长链非编码RNA(lncRNA)、启动子和增强子关联的不稳定转录本(uaRNA、eRNA)等更倾向于结合染色质参与调控染色质结构、转录和RNA加工等过程。尽管零星报导少数RNA核滞留的现象,但为何大部分lncRNA会滞留于染色质上行使调控功能,仍是个不解之谜。上世纪80年代初,Joan Steitz通过系统性红斑狼疮患者血液抗体分离提取 U1,U2, U4, U5和U6小核糖核蛋白粒子(又称为 snRNP),揭示了它们参与RNA剪接的经典功能。近年来施一公团队系统报导了真核生物剪切体的原子结构和生化功能。然而,一直让人困惑的是,细胞内U1 snRNP的数量为什么比其它剪接相关snRNP高 2-5倍。虽然Gideon Dreyfuss和Phil Sharp等团队曾揭示U1 snRNP调控转录终止和方向的非经典功能,U1 snRNP在细胞中的丰富存在仍然是一个让人困惑的问题。为了探究lncRNA的染色质结合机制,研究者首先建立和运用一套新颖的mutREL-seq方法来高精度筛选调控RNA定位的关键序列,意外发现了U1 snRNP识别位点参与调控候选RNA的染色质滞留。相比于蛋白编码基因,lncRNA转录本含有更多的U1识别位点(同时也是潜在的5’剪接供体位点),而其基因组区域具有更少的3’剪接受体位点。并且U1 snRNP更高水平地结合在lncRNA上。随后,研究者分别使用antisense morpholino oligos(AMO)和auxin-induced degron(AID)诱导蛋白降解系统,来抑制U1 snRNA和核心蛋白组分SNRNP70的功能。研究者发现小鼠胚胎干细胞中近一半的lncRNA受U1 snRNP调控。另外,与转录调控元件关联的不稳定非编码转录本如uaRNA、eRNA等,它们的染色质结合在U1 snRNP抑制后也显著下降。研究者进一步证明了U1 snRNP直接调控成熟lncRNA与染色质的结合,而不是通过影响RNA合成、加工或降解过程的动态变化所产生的间接影响。机制上,研究者鉴定了U1 snRNP在染色质上的互作蛋白,发现U1 snRNP结合特定磷酸化状态的RNA转录聚合酶II(Pol II)。转录抑制明显降低了U1 snRNP及其所调控的非编码RNA与染色质的结合,表明U1 snRNP通过与磷酸化的Pol II互作来介导其互作RNA与染色质的结合。最后,研究者通过以lncRNA Malat1为例,进一步验证了U1 snRNP对其染色质结合的调控作用。去除SNRNP70后,绝大部分Malat1 “核斑”定位信号消失,并弥散在核质及细胞质中。同时,Malat1在活跃表达基因染色质区域的结合信号显著下降,表明U1 snRNP不仅可以将Malat1滞留在染色质上,同时也参与调控后者在染色质上的移动及其与靶基因的结合。综上,研究者提出如下模型(图1):5’和3’剪接位点在lncRNA上的不对称分布,致使U1 snRNP持续结合在lncRNA转录本上,而不能通过RNA剪接过程释放,从而介导了lncRNA的染色质滞留。磷酸化Pol II进一步介导了lncRNA-U1 snRNP复合体在染色质上的移动(mobilization)。对于大多数低丰度、不稳定的lncRNA,它们只能靶向结合邻近的染色质区域(顺式cis作用);而对于少数稳定和高丰度的lncRNA,如Malat1,U1 snRNP促进了其迁移和结合更多的靶基因区域(反式trans作用)。图1. U1 snRNP介导非编码RNA染色质结合的模式图。论文链接:https://www.nature.com/articles/s41586-020-2105-3
清华大学 2021-04-10
一对特异识别绵羊KRT25基因的多肽及其编码基因和应用
本发明公开了一对特异识别绵羊KRT25基因的多肽及其编码基因和应用。该多肽由多肽甲和多肽乙组成;所述多肽甲由16个TAL核酸识别单元组成,每个TAL核酸识别单元中具有一个双连氨基酸;所述多肽乙由15个TAL核酸识别单元组成,每个TAL核酸识别单元中具有一个双连氨基酸。本发明可实现在细胞或个体水平上对绵羊KRT25基因进行敲除或修饰,以解析绵羊KRT25基因的功能、构建绵羊KRT25基因突变库或获得相关疾病模型,为绵羊育种及医药研发服务。
青岛农业大学 2021-04-13
猕猴桃种间杂交品种
可以量产/n目前,“意大利金桃公司”、“联想佳沃”和“阳光味道”等国内外企业在意大利切塞纳、中国四川、陕西、河南等地累计推广种间杂交新品种20万亩,近三年累计新增产值86亿元。项目成果推动了中国猕猴桃提质改造,催生了一批著名猕猴桃企业(佳沃、阳光味道等),形成了4个著名猕猴桃商标,占据了我国猕猴桃的中、高端市场。市场预期:通过推广‘金艳’、‘金梅’和‘金圆’等猕猴桃杂交新品种,同时实施相关的配套栽培技术体系,此类猕猴桃的亩产值在1.5万元,目前在成都蒲江等地已经形成‘金艳’猕猴桃主导的
中国科学院大学 2021-01-12
植物株型相关蛋白PROG2及其编码基因与应用
本发明公开了一种植物株系相关蛋白PROG2及其编码基因与应用。本发明所提供的植物株系相关蛋白PROG2为如下a1)或a2)或a3):a1)氨基酸序列是序列表中序列2所示的蛋白质;a2)在序列表中序列2所示的蛋白质的N端和/或C端连接标签得到的融合蛋白质;a3)将a1)或a2)所示的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的与植物株型相关的蛋白质。实验证明,植物株系相关蛋白PROG2对调控水稻株型和产量具有非常重要的作用,在培育高产水稻新品种中具有广阔前景。
中国农业大学 2021-04-11
无偿提供新冠病毒和SARS编码基因的表达载体
山东大学高等医学研究院王培会课题组目前拥有SARS和COVID-19编码的所有基因。为了减少科研人员重复工作和科研经费浪费,现无偿为学术界提供pcDNA6B-viral gene-FLAG载体。另外,对于擅长PCR和分子克隆的实验室,也可以自行合成(最快只需3-7天)。如果并不擅长PCR和分子克隆,推荐等待邮寄方式(联系方式wphlab@163.com)。 
山东大学 2021-04-10
人类周围神经发作性疼痛致病基因及其编码蛋白
本发明提供了一种变异的 SCN11A 基因,即人类周围神经发作性疼痛致病基因 SCN11A,其特征在于该变异的 SCN11A 基因的第 673位碱基由野生型的 C 变异为 T;或该变异的 SCN11A 基因的第 2423位碱基由野生型的 C 变异为 G。本发明还提供了一种检测来源于人体生物样本中是否存在所述基因的突变方法及检测试剂盒。本发明提供的变异的人类 SCN11A 基因可用于制备人类周围神经发作性疼痛基因诊断芯片,变异的人类 SCN11A 基因所编码的蛋白质可作为治疗人类周围神经发作性疼痛的药
华中科技大学 2021-04-14
一种植物磷转运蛋白及其编码基因和应用
本发明公开了蛋白质nog1在调控植物产量和/或穗粒数中的应用。所述蛋白质nog1为氨基酸序列是序列表中序列2所示的蛋白质;所述产量为单株产量;所述穗粒数为主茎穗粒数。实验证明,向Guichao 2中导入抑制所述蛋白质nog1表达的物质,得到转基因植物乙;与Guichao 2相比,转基因植物乙的单株产量减少和/或主茎穗粒数减少。将编码蛋白质nog1的核酸分子导入SIL176中,得到转基因植物甲;与SIL176相比,转基因植物甲的单株产量增加和/或主茎穗粒数增加。因此,蛋白质nog1对调控水稻产量和穗粒数具有非常重要的作用。
中国农业大学 2021-04-11
1 2 3 4 5 6
  • ...
  • 60 61 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1