高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
海带打结机及打结方法
海带作为一种重要的美食,在国内外具有极大的市场需求。海带的打结对于海产品 产业经济的发展具有重要的意义。目前人工徒手完成,打结效率低,用工成本高。针对以 上难题,设计海带打结机及打结方法。 该项目独创由步进电机带动圆盘式上料装置上料技术,三对打结指模拟手工打结技 术,快速方便的独特切割技术,电-气控制相结合技术等技术解决了当前海带打结机打 结效率低等难题。
青岛农业大学 2021-04-11
永磁振动发电装置及应用
一、 项目简介项目涉及将振动的机械能转换为电能的技术,特别涉及永磁振动发电装置及其应用。小功率电子设备广泛应用于信号采集、无线通信等领域,是一类工业生产和日常生活都必不可少的重要设备。小功率电子设备现有的电源主要依赖于电池,需要经常进行电池的更换或充电。小功率电子设备的工作环境中存在一定的振动能源,利用永磁振动发电装置将能解决这些电子设备的供电问题。二、 项目技术成熟程度已完成实验室工作,进入中试阶段。三、 技术指标经该电能处理的直流稳压电能由振动发电装置的VO端输出,输出电压为3-5V。获得实用新型专利,已申报发明专利。四、 市场前景本发电装置是一个封闭的系统,可防止外界环境对其性能的破坏,具有很高的可靠性,能够长期使用而无需维护,具有广阔的市场前景。五、 规模与投资需求根据生产规模确定。六、 生产设备100平面厂房, 电工检测仪器及机械加工设备等。七、 效益分析按每年生产1000套计算,可获利约800-1000万。八、 合作方式面谈。九、 项目具体联系人及联系方式王博文, 王志华,电话:022-60204363;E-mail: bwwang@hebut.edu.cn十、 附件:成果图片图1 研制的振动发电机图2 振动发电装置与测试系统
河北工业大学 2021-04-11
XCC桩及复合地基技术
该技术是利用一种截面如字母X形的钢模代替传统的沉管灌注桩圆形钢模,钢模在 X形活瓣桩靴的保护下沉入地基中形成X形空腔,灌注混凝土后边振动边拔管,X 形活瓣桩靴自动打开,使混凝土进入X形空腔内,形成一种X形状的现浇混凝土 桩。施工机具、桩模和桩尖分别如图1〜4所示,成桩后的X形混凝土桩如图5 所示。现浇X形混凝土桩的截面尺寸通过三个变量控制:外包圆直径a、开弧 间距力和孤度。(如图6所示);一般情况下,其取值范围分别在250mm~1500mm、 100 mm ~130 mm和60。~120。之间。与传统灌注桩技术相比,现浇X形混凝土 桩具有较大的单位体积材料比表面积,因而可以在不增加工程量的前提下大大 提高单桩承载力,从而提高性能价格比。以桩径为426 mm普通混凝土桩为例, 在等面积的情况下,X形混凝土桩周长是普通圆形截面桩的165.8 %,说明在混 凝土用量相同的情况下,X形混凝土桩侧摩阻力大大提高;在等周长的情况下,X 形混凝土桩的截面积仅为普通圆形桩截面的36. 4 %,说明在保证侧摩阻力基本 不变的条件下,X形混凝土桩的混凝土用量大大减小。
重庆大学 2021-04-11
PCC桩及复合地基技术
针对我国高速公路和高速铁路等工程建设中的工后沉降控制难题,研发了 具有独立自主知识产权的大直径现浇混凝土管桩(以下简称PCC桩)及复合地基 施工方法。PCC桩桩机设备由机架、高频振动头、双层套管沉模结构,活瓣桩靴, 沉模造浆器,混凝土分流器等部分组成。在技术实施过程中,首先进行场地平 整和定位等准备工作,然后通过PCC桩桩机上部振动头将特制两个固定同心的 大直径钢管组成的环形沉模装置,在活瓣桩靴的保护下打入地基设计深度,通 过混凝土分流器向该沉模装置的环形域均匀注入混凝土,然后振动拨出该沉模 装置,在沉入和拨出过程中,成模造浆器向该沉模装置内、外侧壁注入润滑泥 浆,活瓣桩靴结构在该沉模装置进入地基时闭合,拨出时自动分开,使之形成 混凝土管桩。为了保证桩与土共同承担荷载,并调整桩与桩间土之间竖向荷载 及水平荷载的分担比例,在群桩顶部设置1-2层土工格栅与碎石混合的加筋褥 垫层形成复合地基。复合地基褥垫层厚度一<300-500mm,群桩桩间距3-4m,梅 花形布置和方形布置。
重庆大学 2021-04-11
前景图像提取方法及装置
其中的前景图像提取方法包括:获取第i帧与第i-1帧中位置相同的像素点之间的距离,获取距离大于预定值的像素点集合Z,获取像素点集合Z中与第i-1帧中的前景区域的像素点位置相同的像素点集合U,将像素点集合U进行背景差分处理,获得像素点集合E,根据像素点集合E、像素点集合T以及像素点集合W的并集确定第i帧的前景区域,像素点集合W为像素点集合Z中与第i-1帧中的前景区域的像素点位置不相同的像素点集合,像素点集合T为第i-1帧的前景区域中与像素点集合U中的像素点位置不相同的像素点集合。上述技术方案能够快速准确的提取出第i帧中的前景图像。
电子科技大学 2021-04-10
悬挂式单轨轨道及电车
本发明提供了一种悬挂式单轨轨道及电车,属于交通运输领域,包括轨道梁,轨道梁上设置有走行腔,走行腔的底部为走行面、侧面为导向面,走行面上设置有防磨增粘层、导向面上设置有防磨层。
西南交通大学 2021-04-10
锂空电池及关键材料
研究团队设计和合成出一种具有开放式结构的剑麻状Co9S8材料,并首次将其作为锂空气电池正极。其开放状结构不仅为反应产物提供了丰富储存空间,有效避免不溶Li2O2对空气电极的堵塞。而且,特殊的开放式结构有利于氧气的俘获与释放,为高效快速电极反应提供保障;其次,Co9S8具有优异的催化活性,有效改善了氧气反应动力学,大幅度提高了电极反应速度;最后,Co9S8且具有良好的氧气亲和性,可以诱导氧气在Co9S8纳米棒表面反应生成过氧化锂,形成优异的Li2O2/电极接触界面,从而有利于充电过程中充分发挥Co9S8的催化效率,促进Li2O2的完全分解。所以,该Co9S8空气电极综合解决了上述三个方面的问题,相应的锂空电池表现出优异的电化学性能。在50 mA g-1的电流密度下,可以获得高达~6875 mAh g-1的放电容量,在控制放电容量为1000 mAh g-1的条件下,可以将充放电过电位降低至0.57 V,优于目前已报道的氧化物基催化剂。
厦门大学 2021-04-11
锂硫电池及关键材料
“双高”硫电极复合材料。要实现可超越现有锂离子电池的高比能锂硫电池的商业化应用,不仅需要提高复合正极材料的硫含量(high sulfur content, HSC),还需要有高的硫复合电极的硫载量(high sulfur loading, HSL),形成所谓“双高”电极。研究团队采用模板法构筑了一种新型的准二维多孔蜂窝状Co@N-C材料作为锂硫电池的载硫基体。蜂窝状的结构具有最高的密度、最大的可利用空间以及所需要的材料最少等优势,将这样一种特殊的结构作为锂硫电池的骨架材料,不仅让具有高比表面积的单片蜂窝状实现高含量的硫复合,还可以通过多层蜂窝片的有序堆积实现高的载硫量,同时保持了Co-N的“双催化”、多功能的作用,取得了优异的电化学性能(ACS Nano, 2017,11(11), 11417-11424)。非碳类Co4N基体材料。研究团队首次制备了非碳类介孔Co4N微球作为硫复合电极基体材料,实现了高达95%的载硫量,并取得了优异的电化学性能;同时,该Co4N基体材料对充放电过程中间多硫化物具有更强的亲和性、更快的吸附速度、更高的吸附量,是一种理想的硫复合电极基体材料(ACS Nano, 2017, 11, 6031-6039)。
厦门大学 2021-04-11
全光开关装置及方法
发明(设计)人:夏可宇, 阮亚平, 葛士军, 吴浩东, 唐磊, 陆延青。本发明公开了一种全光开关装置及方法,装置包括第一分束器、液晶盒、第二分束器、第三分束器、手性物质、第四分束器、第一反射镜、第二反射镜、相位调节器、第五分束器、第一光电探测器和第二光电探测器,其中,窄线宽激光在第一分束器将分束为控制光和参考光,参考光被第一光电探测器探测,经过液晶盒的控制光和入射的信号光在第二分束器合束,在第三分束器分为第一光束和第二光束,第一光束经手性物质和第一反射镜到达第四分束器,第二光束经第二反射镜、相位调节器到达第四分束器,两束光合束后干涉产生路径1光束和路径2光束,路径1光束分为透射光束和反射光束,透射光束被第二光电探测器探测。本发明可实现快速、稳定、能耗极低的全光开关控制。
南京大学 2021-04-10
猪流感诊断试剂及疫苗
猪流感(Swineinfluenza,SI)是目前危害养猪业的一种重要的 呼吸系统疾病,是规模化养猪场普遍存在且难以根除的群发性疾病之一。项目 开发了猪流感病毒的快速检测方法,制备了猪流感灭活疫苗(H1N1 亚型 SSD 株)。 经过临床试验证明,注射疫苗可显著提高仔猪成活率。 生产条件及经济效益预测:经过市场推广,疫苗销售良好,用户反应免疫 效果良好,可以显著提高仔猪抵抗力,仔猪成活率和出栏率提高 10%。平均每年 能为社会增加 1365 万元的经济效益;用于该项科研成果的每 1 元研制费用,在 经济效益计算年限内,平均每年可为社会增加 5.35 元的纯收益,经济效益非常 明显。
青岛农业大学 2021-04-11
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 348 349 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1