高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种轻质堇青石-莫来石复合陶瓷材料及其制备方法
一种轻质堇青石-莫来石复合陶瓷材料及其制备方法。其方案是:以20——70wt%水铝石、10——30wt%无定型二氧化硅、5——30wt%滑石粉和10——40wt%黏土为原料,外加原料3——10wt%水,搅拌,成型,干燥,1250——1350℃条件下保温2——6小时,制得多孔堇青石-莫来石复合材料。然后以该复合材料的粒度为2——1mm和1——0.088m的颗粒为骨料,以粒度小于0.088m的粉体为基质,外加糊精和水,混匀,成型,干燥,1250——1350℃条件下保温2——6小时,制得轻质堇青石-莫来石复合陶瓷材料。本发明具有成本低、环境友好、节能环保以及化学成分可控的特点,其制品体积密度小、物相成分和气孔孔径分布均匀、常温力学性能优良、高温性能较好和抗热震性能较高。 (注:本项目发布于2014年)
武汉科技大学 2021-01-12
一种面向高温高压过滤体系的多孔陶瓷膜管安装方法
本发明公开了一种面向高温高压过滤体系的多孔陶瓷膜管安装方法,属于多孔陶瓷膜制备及应用领域。该方法主要采用直管式多孔膜管替代传统的法兰式多孔陶瓷膜管构型,改变传统的挂烛式和压板密封方式,大大降低了高温高压过滤体系下的多孔陶瓷膜管断裂风险。本发明通过采用管板中间金属拉杆来支撑多孔陶瓷膜管,金属拉杆上下底部采用弹性密封垫作为应力缓冲,多孔陶瓷膜管底部采用弹簧紧固方式增加上下弹性晃动余量,有效解决了孔陶瓷膜管在高温高压环境下因应力集中导致的刚性断裂问题,该法能够延长多孔陶瓷膜管在高温高压体系的使用寿命。
南京工业大学 2021-01-12
XE-708/XE-709/E70/XE-650压电陶瓷驱动器
产品详细介绍XE-650系列压电陶瓷控制器,专门设计用来驱动低压压电促动器或纳米定位台的控制器。它由一个特殊电路构成,可提供一个恒定电压或一个范围的可变电压。集成多种波形发生器功能,可调节幅、频参数,可满足不同使用要求。电路内部设有完善的保护功能,安全可靠性高。XE-708单通道系列压电陶瓷控制器,采用模拟控制设计思路,输入的模拟信号按比例进行线性放大,模拟输入范围可供选择。插拔式接线端子便于用户集成,应用于高可靠性要求的工业领域中。单通道XE-709单通道单通道是数字式压电陶瓷控制器,数字控制系统具有多种通信接口,实现与上位机实时通信,支持上位机软件二次开发。该设备同时还具有一个模拟信号的位置控制输入端口,便于与其他数字及模拟控制信号集成。上位机通信软件可设置电压与位移等参数。E70是采用直流供电方式的压电控制器,具有多种通信接口,实现与上位机实时通信,支持上位机软件二次开发。设备同时具有三个模拟信号控制输入端口,便于模式应用选择。外部可设置数/模与伺服控制等操作模式,易于操作。
哈尔滨芯明天科技有限公司 2021-08-23
抗肿瘤活性的大黄素和5-氟尿嘧啶拼合物及其制备方法
一种抗肿瘤活性的大黄素和5-氟尿嘧啶拼合物及其制备方法,属于用于抗肿瘤药物的衍生物。本发明的大黄素和5-FU拼合的衍生物,为3-取代的1-(1,6,8-三甲氧基-3-甲基-9,10-蒽醌-2-甲基)-5-氟尿嘧啶衍生物,其制备方法是以大黄素为原料,经6,8-二甲基化、2位羟甲基化、1位甲基化、再将2位羟甲基氯代,然后与5-FU的N1位连接,最后将得到的拼合物与不同的卤代烷或取代氯苄进行N3-烷基化,得到目标化合物。本发明的大黄素和5-氟尿嘧啶的拼合物对肿瘤细胞和正常细胞具有较好的选择性,可用于制备治疗癌症的药物。体外抗肿瘤实验表明,本发明提供的拼合物与5-FU及大黄素相比,对正常细胞的毒性明显降低。
江苏师范大学 2021-04-11
肖伟烈团队在二萜类抗炎活性分子研究方面取得重要进展
云南大学教育部自然资源药物化学重点实验室肖伟烈团队在具有抗炎活性的天然小分子研究方面取得新进展,围绕巨噬细胞NLRP3炎症小体和NF-κB信号通路,从多种药用植物中发现了一系列结构新颖、活性显著的二萜类化合物。 该团队从大戟科大戟属植物泽漆(Euphorbia helioscopia)中发现三个具有重排Jatrophane-型骨架的新颖二萜衍生物, Euphopias A–C。其中Euphopias A和B 是以三环[8.3.0.02,7]十三烷为核心的新骨架二萜,Euphopia C则是以四环[11.3.0.02,10.03,7]为核心的新骨架二萜。
云南大学 2021-02-01
高活性、高稳定性复合固体酸碱催化剂及其应用新工艺
催化剂技术的进步关系到现代化学工业的兴衰,其中酸、碱催化剂的使用涉及了三分之一以上的化工生产过程,废水处理、设备腐蚀、固液残渣处理等问题,必须从技术源头上才可能根本解决。本项目技术突破传统分子筛类、金属氧化物、酸碱性树脂类“固体催化剂”的限制,设计开发了一系列酸或碱强度、密度可以调变的复合固体酸、固体碱催化剂,可以在较宽的反应温度条件下稳定使用,覆盖 60300℃工况条件。一方面替代液体酸或挥发性酸(硫酸、磷酸、有机磺酸、氢氟酸、三氯化铝等),或腐蚀性碱(苛性碱、醇碱)、有机碱(胺)催化剂在传统化工生产中的应用;另一方面,利用固体成型独特的物化性质和工况适应性,配套结构型反应器、催化精馏反应器发展了具有自主知识产权的高端化工成套技术。
济南大学 2021-05-11
低渗致密油藏自驱动多效活性纳米粒子提高采收率技术
中国地质大学(北京) 2021-05-10
牙体硬组织原位修复和递送活性物质用高分子材料
本项目从仿生模拟蛋白质促进牙本质及牙釉质再矿化的角度出发,合成表征一系列具有不同代数及改性基团的PAMAM型树枝状高分子,考察其对牙本质及牙釉质再矿化过程中晶核形成、矿物质沉降和富集的促进作用及其作用机理,包括相关的细胞、动物实验研究。主要研究成果如下:1. 成功合成了磷酸和羧酸改性的聚酰胺-胺树枝状高分子(PAMAM-PO3H2和PAMAM-COOH)。通过体外和体内实验研究发现,这两种改性的PAMAM都能诱导牙本质和牙釉质矿化,修复受损牙体硬组织。2.成功合成了阿伦磷酸(ALN)改性的羧酸化聚酰胺-胺树枝状高分子ALN-PAMAM-COOH,并通过体外模拟实验及动物实验发现ALN-PAMAM-COOH具有1. 原位诱导牙釉质再矿化的功能,并对HA有强特异吸附和诱导再矿化的功能,且诱导矿化四周后的牙釉质表面硬度可恢复至95.5%,涂层附着力强。 在进一步研究中发现,羧酸改性的四代聚酰胺-胺树枝状大分子能同时实现药物缓释和诱导受损牙本质矿化的功能,利用树枝状高分子本身可载药的特点将三氯生载入PAMAM-COOH,制备的复合体系可以吸附在牙本质表面。可实现三氯生的缓慢释放并能同时诱导牙本质矿化,因此该材料同时具有负载活性物质(如抗菌药物)和修复受损牙齿的功能。 主要技术指标:1. 本项目制备的磷酸或羧酸改性的树枝状高分子具有原位诱导牙本质及牙釉质矿化(硬度修复95%以上)的功能,且能够用于三氯生等牙齿常用药物的缓释,因此既可作为牙齿修复添加剂也可作为牙齿护理添加剂,并同时可用于负载其它活性物质。 本项目用来修复受损牙本质和牙釉质的树枝状高分子具有良好的生物相容性,且在口腔环境中没有生物毒性,因此可用作制备牙齿护理和修护产品的添加剂。 应用范围: 牙科护理产品、牙科用医疗器械。项目目前已进入小批量生产阶段,成果权属为我校独自拥有。
四川大学 2021-04-11
用于烟气脱硫的伽玛型三氧化二铝膜改性污泥活性炭
本发明公开了一种脱硫用伽玛型三氧化二铝膜改性污泥活性炭,其原料组分为ALCL3·6H2O和污水处理厂污泥;制备步骤如下:①制备AL(OH)3溶胶;②制备污泥活性炭;③制备伽玛型三氧化二铝膜改性污泥活性炭。本发明应用于对低浓度的烟气脱硫,有益效果是,首次将伽玛型三氧化二铝膜用于改性污泥活性炭的脱硫性能,有效提高了污泥活性炭的脱硫效率。
天津城建大学 2021-01-12
牙体硬组织原位修复和递送活性物质用高分子材料
本项目从仿生模拟蛋白质促进牙本质及牙釉质再矿化的角度出发,合成表征一系列具有不同代数及改性基团的PAMAM型树枝状高分子,考察其对牙本质及牙釉质再矿化过程中晶核形成、矿物质沉降和富集的促进作用及其作用机理,包括相关的细胞、动物实验研究。主要研究成果如下: 1.成功合成了磷酸和羧酸改性的聚酰胺-胺树枝状高分子(PAMAM-PO3H2和PAMAM-COOH)。通过体外和体内实验研究发现,这两种改性的PAMAM都能诱导牙本质和牙釉质矿化,修复受损牙体硬组织。 2.成功合成了阿伦磷酸(ALN)改性的羧酸化聚酰胺-胺树枝状高分子ALN-PAMAM-COOH,并通过体外模拟实验及动物实验发现ALN-PAMAM-COOH具有原位诱导牙釉质再矿化的功能,并对HA有强特异吸附和诱导再矿化的功能,且诱导矿化四周后的牙釉质表面硬度可恢复至95.5%,涂层附着力强。 3.在进一步研究中发现,羧酸改性的四代聚酰胺-胺树枝状大分子能同时实现药物缓释和诱导受损牙本质矿化的功能,利用树枝状高分子本身可载药的特点将三氯生载入PAMAM-COOH,制备的复合体系可以吸附在牙本质表面。可实现三氯生的缓慢释放并能同时诱导牙本质矿化,因此该材料同时具有负载活性物质(如抗菌药物)和修复受损牙齿的功能。
四川大学 2016-04-20
首页 上一页 1 2
  • ...
  • 65 66 67
  • ...
  • 166 167 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1