高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
农业智联网实训套件 (Agricultural AIoT Training Kit)
基于农业场景,融合物联网、人工智能等技术。可实现包括人工智能机器视觉技术的农作物病害检测、传感器数据收集与分析等功能。It is used in the agricultural scene with IoT, AI and other technologies, also can realize the functions including crop disease detection based on AI machine vision technology, sensor data collection and analysis.
重庆海云捷迅科技有限公司 2022-06-17
农业智联网实训套件 (Agricultural AIoT Training Kit)
基于农业场景,融合物联网、人工智能等技术。可实现包括人工智能机器视觉技术的农作物病害检测、传感器数据收集与分析等功能。It is used in the agricultural scene with IoT, AI and other technologies, also can realize the functions including crop disease detection based on AI machine vision technology, sensor data collection and analysis.
英特尔FPGA中国创新中心 2022-05-24
智净洁净工作台HCB-1300V
专业局部空气净化装置,可用于制药、医疗卫生、高校科研实验室、光电 / 微电 子制作等领域 内嵌式照明,避免眼睛疲劳 紫外灯杀菌预约设计,任意时间段自助开关,方便安全 静音设计,保证操作人员的舒适性 智能恒风速设计,保证风速状态稳定
青岛海尔生物医疗股份有限公司 2022-09-08
智 慧 型 交 流 电 源 稳 压 器
产品详细介绍 產 品 特 性 高精密度 高功率因素 高效率 高超載能力 低電磁干擾 低諧波污染 低噪音 體積小重量輕 模具化設計 自動電子迴路系統 適 用 場 所 SMT/AI 設備   程序控制系統 醫學監控系統 電子通訊設備 生產線設備 銀行電子設備 自動測試設備 CAD/CAM CNC 放電加工機 CNC PCB 鑽孔機 塑膠射出成型機 電子醫療儀器 實驗室電子設備 電子檢驗設備 音響與視訊設備 安全警報系統 電腦及其相關產品 辦公室 OA 設備 影印/印刷設備 多媒體設備
艾普斯电源(苏州)有限公司 2021-08-23
云智数字教育-智能制造专业群建设方案
云智数字教育智能制造专业群建设方案,秉承“产教融合、工学结合、多元育人、国际化合作”的理念,以岗位需求为标准、以发展技能为核心,构建人才培养模式,以就业为导向、以产学研为途径,引入企业实际案例,创新课程体系,培育符合市场和企业需求的高素质复合型、技能型人才。依托守中集团五系工业机器人技术核心优势,聚焦数字孪生等趋势性技术,建设由“智能制造综合实训中心+校外实训基地”构成的“实训、实习、实岗”的三实教学模式,提供创新型、技术型、实务型、复合型人才培养,为院校赋能提供一站式的实践教学解决方案。
深圳市云智数字技术教育有限公司 2022-08-01
易穿戴的高频稳态视觉诱发脑机控制系统
"脑机接口(Brain-Computer Interface,BCI),是一种可以实现大脑与机器之间连接的技术,该技术可以对脑电波信号进行解码,并将其翻译成机器能够读懂的指令,从而实现人脑与机器之间的交互。脑机接口技术按信号采集方式可分为侵入式和非侵入式两类。侵入式脑机接口将电极直接植入到大脑的颅腔或灰质内,所获取的神经信号质量比较高。但其缺点是容易引发免疫反应和愈伤组织(疤),进而导致信号质量的衰退甚至消失。非侵入式不必植入大脑,只需在头部佩戴电极装备,通过诱发或自发脑电信号进行采集分析,具有良好的时间分辨率、易用性、便携性,而且价格相对低廉。 本项目采用自主研制的专用无胶干电极和高频稳态视觉诱发系统实现脑机控制。主导采用15~25Hz及以上的光源频率进行视觉诱发,结合自主研制的专用无胶干电极装置、高频稳态视觉诱发系统、基于FBCCA算法的微弱脑电信号检测处理系统,项目就以下方面进行创新:专用干电极的研制、针对干电极的高信噪比差分滤波方法和基于滤波器组的典型相关分析方法。"
北京航空航天大学 2021-04-10
少通道脑机接口EEG信号的特征提取方法
本发明公开了少通道脑机接口EEG信号的特征提取方法,尤其涉及用于脑机接口的信号处理方法,属于认知神经科学、信息处理相交叉的技术领域。本发明通过基于sin波辅助信号的多变量经验模式分解将少通道EEG信号扩容至多通道,通过将多通道合成信号映射在多维球体上以获取投影极限值瞬时时刻及其对应的通道信号,由投影极限瞬时时刻及其对应的通道信号确定多通道合成信号局域均值,以多通道合成信号及其局域均值的差值为固有模态函数,经过多次迭代计算获得多个固有模态函数。本发明提出的基于sin波辅助信号的多变量经验模式分解有效克
东南大学 2021-01-12
抑郁情绪快速评价与灾后心理重建脑机接口
北京工业大学 2021-04-14
基于脑电源定位方法的人体精神状态检测方法
基于脑电源定位方法的人体精神状态检测方法,先进行受试者的选择,后进行硬件连接和软件调试,再采用基于独立成分分析脑电信号特征提取方法进行滤波去噪、伪迹分离和提取脑电数据特征,并在MATLAB平台上画出所有分量的地形图;最后使用通过基于电偶极子理论、正逆演问题的分析以及研究头部模型的确定,得出电偶极子的源定位方法,以应用于脑电信号的源定位;最后对ESL的
西安交通大学 2021-04-14
脑-脾神经环路控制抗体免疫应答的新机制
2020年4月29日,《自然》杂志在线发表了清华大学医学院、免疫学研究所祁海课题组、上海科技大学胡霁课题组、清华大学麦戈文脑科学研究所钟毅课题组的合作论文,题目是“受行为影响的脑活动调控体液免疫应答”(Brain control of humoral immune responses amenable to behavioural modulation)。通过小鼠模型,该研究发现了一条从大脑杏仁核和室旁核CRH神经元到脾内的神经通路——这条通路促进疫苗接种引起的抗体免疫应答,并可通过响应躯体行为刺激对免疫应答进行不同调控。据作者介绍,这是迄今发现的第一条解剖学明确、由神经信号传递而非内分泌激素介导的、中枢神经对适应性免疫应答进行调控的通路,它的发现为神经免疫学研究拓展出了一个新方向。 “勤動”与增强免疫的中枢神经核团与环路 首先,研究者开发了一种新型去除小鼠脾神经的手术,发现这种小鼠在疫苗接种后所能产生的浆细胞(抗体分泌细胞)数量有明显缺陷,暗示了脾神经冲动信号对B细胞应答有促进作用。通过药理学、遗传学实验,他们继而发现B细胞表达乙酰胆碱9受体对脾神经的这个促进作用不可或缺。通过体内细胞剔除实验,研究者发现在肾上腺素能的脾神经和需要感知乙酰胆碱的B细胞之间,最可能起到了“换元”作用的,是新近发现的可感受去甲肾上腺素而分泌乙酰胆碱的T细胞。 进一步,作者通过伪狂犬病毒逆行追踪,发现脾神经与室旁核(PVN)、中央杏仁核(CeA)有连接。这两个区域的功能与应激、恐惧反应紧密相关,而两处共有的一类神经元是表达CRH(促肾上腺皮质激素释放激素)的神经元。CRH神经元是掌控垂体-肾上腺轴的上游神经元,其激活可导致肾上腺大量释放糖皮质激素,调整机体应激,抑制免疫系统活动。这个已知抑制免疫的内分泌功能,不能解释作者看到的免疫增强的现象。但会不会CRH神经元还可以直接操控脾神经,通过神经通路传导免疫增强的信号来促进浆细胞的产生呢? 为检验这一假说,研究者通过光遗传学实验,发现刺激CeA/PVN的CRH神经元后几秒钟之内就会记录到脾神经的电信号明显加强,证明CeA/PVN与脾间的确有通路连接(图1)。进而,作者通过CRH神经元剔除、DREADD化学遗传学抑制及激活的方法,证明 CeA/PVN CRH神经元活性对应调控了脾内B细胞应答产生浆细胞的过程。 图1 光遗传学实验证明CeA/PVN CRH 神经元与脾神经的连接 自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2和视频)行为可以同时激活这两个核团的CRH神经元。 自主神经活动可以受外界环境及行为的影响。那么,有没有行为可以刺激这条脑-脾神经轴从而增强免疫应答呢?作者通过监测小鼠在不同行为范式下 CeA/PVN 的 CRH 神经元活动发现,一个他们新开发的“孤立高台站立”(elevated platform standing,如图2)行为可以同时激活这两个核团的CRH神经元。 图2 孤立高台站立模式图 更重要的是,抗原接种后第二周里,每天经历这个行为范式两次,小鼠抗原特异的抗体就可以增加约70%。这种行为增强抗体应答的效果,依赖于CRH神经元、依赖于脾神经、并且需要B细胞表达的乙酰胆碱受体。虽然高台站立可以看作是一种应激范式,但并非所有导致应激状态的行为都能增强免疫。作者测试了神经生物学研究中常用的捆绑模型,发现这一范式更强烈而持久激活PVN的CRH神经元,但抑制 CeA 的 CRH 神经元,致使机体持续产生高水平的糖皮质激素,对免疫应答产生了抑制作用。 至此,研究者在这项研究里鉴定、证明了一条对适应性免疫具有增强功能的脑-脾神经轴,揭示了CRH神经元的双重免疫调节功能——经典已知的垂体-肾上腺神经内分泌免疫抑制作用和新发现的经神经环路直接作用于脾的免疫增强作用。 神经免疫学方兴未艾,目前的主要方向包括:以CNS和外周神经为靶器官,研究组织固有的小胶质细胞和招募而至的免疫细胞在系统稳态与病变中的作用;研究中枢及外周神经与淋巴器官和屏障组织(肠上皮等)里固有免疫细胞(巨噬细胞、ILC等)的信号交互与功能互调等。刚刚发表的这一新工作,使研究者认识到淋巴细胞介导的适应性免疫应答也可以受到中枢-外周神经环路的直接调控,以及通过躯体行为正向调节免疫应答的一个生物学基础。 针对最后一点,祁海特别指出,锻炼身体(躯体运动)可以增强“免疫力”,这个几乎所有人或多或少都接受的常识性结论,其背后的科学依据其实远不清楚。他认为,他们发现的脑-脾轴可能为此提供了一个环路方面的解释。我们适度锻炼,可能如同小鼠的EPS,恰到好处地刺激了CeA和PVN的CRH神经元,增进了浆细胞和抗感染抗体的生成。相反,频繁马拉松跑后人们易于感冒,可能是过度应激导致的免疫抑制超越了免疫增强效果。祁海猜测,未来通过神经免疫学的进一步研究,应该可能在特定神经元、神经环路水平定量描述、评价不同锻炼方式、不同躯体运动形式、乃至不同“冥想”“禅修”过程对免疫系统的影响,从而帮助我们为加强“免疫力”而正确选择锻炼或其他增进健康的方式提供更明确的科学依据。这也是题图“勤動”所表达的愿景。 清华-北大生命科学联合中心2013级博士生张旭、清华生命学院2016级博士生雷博、上海科技大学2015级博士生袁媛、清华PTN项目2016级博士生张厉为本文的共同第一作者。该得到科技部和国家自然科学基金委科研基金的支持。祁海课题组还得到北京市科委、清华-北大生命科学联合中心、清华大学免疫学研究所、北京生物结构前沿研究中心、北京市慢性病免疫学研究重点实验室的支持。钟毅课题组得到清华麦戈文脑科学研究所的支持。另外,中国科学院武汉数学物理研究所徐福强课题组、清华大学药学院廖学斌课题组、首都医科大学孙文智课题组为本研究的顺利开展和完成作出了重要贡献。 论文链接: https://www.nature.com/articles/s41586-020-2235-7
清华大学 2021-04-11
首页 上一页 1 2
  • ...
  • 30 31 32
  • ...
  • 47 48 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1