高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于分层配料与布料的烧结过程中同步控制污染物排放的新方法
(专利号:ZL 201510137251.9) 简介:本发明公开了一种基于分层配料与布料的烧结过程中同步控制污染物排放的新方法,属于烧结过程污染物减排技术领域。本发明的具体步骤为:步骤一:烧结混料:制备烧结混合料(a)和配有添加剂的混合料(b);步骤二:烧结布料:(A)在烧结台车的上面铺装铺底料层;(B)将烧结混合料(a)铺装在铺底料层的上面形成第一混合料层;(C)将配有添加剂的混合料(b)铺装在第一混合料层上面形成协同减排料层;(D)再将烧结混合料(a)铺装在协同减排料层上面形成第二混合料层;步骤三:烟气集中收集处理:将台车中后部的风箱内的烟气经增压泵汇入布袋除尘器。本发明通过分层配料与布料,实现了烧结过程中多种污染物的同步控制。
安徽工业大学 2021-04-11
水泥水化机理及过程控制
该项目主要研究了高性能水泥及其组分的水化过程及控制机理,为从科学理论阐释 整个高性能水泥项目的两个基本科学问题:高 C3S 水泥熟料的晶格畸变与辅助胶凝材料 的活化机理奠定理论基础与支撑。并在许多方面取得突破与创新。 
同济大学 2021-04-11
热轧、冷轧、中厚板板形控制技术
现代工业的发展使得用户对板带钢的板形质量提出越来越苛刻的要求,板形控制技术已经成为标志现代化板带热轧机、冷轧机和中厚板轧机的技术装备和自动化水平的代表性技术。北京科技大学陈先霖教授领导的项目组从“六五”至今一直在板带轧制工艺研究、板形控制技术的消化和自主创新领域进行了不懈的努力,取得了多项重要成果并投入实际应用。包括:  能够提供变接触VCL/VCR支持辊技术,自动消除辊间有害接触区,显著改善了轧机的板形控制性能,增加了弯辊调控效果,降低了轧辊消耗,延长了换辊周期。 能够提供高效变凸度HVC/LVC工作辊技术,克服CVC工作辊技术在轧制窄带钢时表现板形调节能力不足的缺陷,实现板形调节与带钢宽度和窜辊量均成线性关系,显著增加轧机的板形调节能力,解放弯辊力,为L1的板形实时控制预留空间。 能够提供非对称ASR/ATR工作辊技术,解决热连轧机组中下游机架不能兼顾板形控制和工作辊磨损控制的难题,在获取好的板形质量的同时实现自由规程轧制。同时,该技术可实现对边部板形要求较高的专用钢的稳定生产。 能够提供均压型PPT中间辊技术,消除了HC轧机辊间接触压力尖峰,解决了轧辊严重剥落损伤问题,提高了板形质量和成材率。 能够提供成套板形控制模型,包括过程控制级(L2)的板形设定控制模型和基础自动化级(L1)的弯辊力前馈控制模型、凸度反馈控制模型、平坦度反馈控制模型、板形板厚解耦控制模型和轧后冷却补偿模型等,实现连续生产过程中高精度的板形自动控制。      以上研究成果在武钢1700冷连轧、宝钢2030冷连轧、武钢1700热连轧、鞍钢1700热连轧、鞍钢2150热连轧、济钢1700热连轧、莱钢1500热连轧、日钢1580热连轧、武钢2800中板等生产线取得了长期稳定应用。 本项目适用于所有的新建和欲改造的板带轧机包括热轧机、冷轧机和中厚板轧机。同时,通过技术集成和转移,可为轧钢技术装备国产化作出较大贡献。 ◆经济效益及市场分析 经济效益主要体现在改善产品的板形质量、提高轧机的生产率和成材率、降低生产成本等方面,同时,由于价格优势,可为企业降低投资成本,节省外汇。市场竞争的压力对新建的和已有的板带轧机的板形控制能力均提出了很高的要求,板形控制技术将成为这些轧机的必备技术。
北京科技大学 2021-04-11
铝箔(带)高速高精轧制控制技术
“高速高精轧制控制技术攻关”属国家“八五”技术攻关课题,解决某铝加工厂1350mm中、精两铝箔轧制机组存在的影响高速高精轧制的控制技术问题。   该项目于1996年通过技术鉴定,1997年获中国有色金属工业总公司科技进步二等奖。主要技术创新点一是采用了新型全密封张力传感器,实现张力直接闭环,提高了张力控制稳定性和精度,克服了原德国产传感器结构不合理、使用寿命低(仅半年)、必须在线标定的缺点,不仅寿命长使用方便,而且价格仅为同类进口传感器的1/10。精度误差小于1/1000,能有效保证高速轧制时张力稳定,板形良好,防止断带,提高厚度精度。第二个创新点是采用了两级计算机控制系统结构,改进控制策略,加强控制功能,提高了控制精度。该系统有以下特点: 采用模糊控制技术进行张力AGC控制。 采用智能化非线性变系数法,解决了直接张力控制投入时系统稳定性问题。 采用模糊卷径记忆法,提高了卷径计算精度。 采用最优控制技术,实现了质量最优、面积最优和重量最优。 采用压下和张力协调控制,提高了厚控系统的稳定性和控制精度。 采用“双重化改造作业法”,基本做到不停产改造调试,对生产的影响减至最小,提高经济效益。 采用“基于专家经验的工艺参数预设定和二次优化设定”模型,提高了设定精度。
北京科技大学 2021-04-11
螺纹钢防锈控制技术研究
通过实验研究发现,提高上冷床时螺纹钢表面的温度可以使螺纹钢表面生成连续、致密的氧化层,对提高螺绞钢表面的抗锈浊性有重要的影响。
北京科技大学 2021-04-10
温室大棚物联网远程控制平台
利用互联网建立手机、电脑和农业现场设备的互联互通,让农 民可以远程查看温室大棚的空气温湿度、土壤温湿度、光照、二氧化碳浓度、 风口开关情况、卷帘情况等现场状态,远程调控现场设备的工作参数,远程发 送控制指令,控制放风机、卷帘机、灌溉系统、补光灯等设备立即开始或者停 止工作。可以设置现场状态警报阈值,温度过低过高、意外停电等情况下手机 和电脑都可以及时收到警报提醒农民及时处理。历史数据持久保存,各种机械 和传感器的历史数据可以查看时间轴曲线分析,温室大棚情况清晰掌握。 整套产品由现场工作机械(放风机、卷帘机等)、现场数据传感器(空气 温湿度、土壤温湿度、光照、二氧化碳浓度等传感器)、网络中央控制器、远 程控制核心平台、手机前端 App、电脑前端软件、前端网站、菓然藓微信综合平 台组成,全自主知识产权,专利产品,放风机控制器和网络中央控制器采用易 施工、稳定性高的射频无线传输,搭载自主研发的 Figbee 自组网协议,传输距 离远、链接稳定。数据传输采用自主研发的 FYY 压缩算法,数据流量小,传输 速度快。当风口或者温湿度等数据有异常发生时,现场设备和传感器会及时推 送警报到互联网,从而第一时间提醒农民进行处理。本平台对农业生产现场数 据进行持久留存,提供曲线、图表分析,利用大数据分析为农民提供生产指导, 建立生产数据农民社交互动平台,促进农民生产技术相互交流、学习。
青岛农业大学 2021-04-11
现代混凝土早期变形与收缩裂缝控制
目针对收缩开裂这一长期困扰工程界而未能有效解决的国际难题,刘加平教授团队创建了多因素耦合作用下收缩开裂风险量化评估方法,设计制备了核心关键材料,建立抗裂能力精准调控成套技术,实现了混凝土收缩开裂风险可计算、抗裂性能可设计、收缩开裂可控制。
东南大学 2021-04-11
现代混凝土早期变形与收缩裂缝控制
"刘加平教授团队历时20年的时间,完成了国家、省部级和重大工程科研项目50余项,实现了收缩开裂风险可计算、抗裂能力可设计、收缩开裂可控制,并应用于数十项重大工程,切实解决了极端干燥环境下的塑性开裂以及强约束结构、大体积混凝土、大型预制构件等硬化收缩开裂难题。 项目在理论和实际上面的贡献主要在于:建立“水化-温度-湿度-约束”耦合作用收缩开裂机制及模型;发明了现代混凝土水化热调控、收缩全过程抑制等关键材料。"
东南大学 2021-04-10
洁净钢生产中精炼渣控制技术
在冶金过程中,炉渣的控制对钢质量有着重要的影响。特别是随着用户对钢质量要求愈来愈高,炉渣的控制技术也显得愈来愈重要。许多高质量的钢种,对冶金精炼渣提出了极为苛刻的要求。这就迫切要求炼钢生产厂家对冶炼过程中的各类渣系的冶金精炼性能有清晰的了解,从而达到在冶炼各过程中能做到充分利用和精确控制精炼渣的根本目的,为洁净钢生产服务。北京科技大学在冶金渣方面的研究已有几十年的历史,无论在理论上还是在工艺上,均已经积累了丰富的经验,形成了自己的特色。 主要的技术有: 极低硫钢(≤0.0020%)冶炼的精炼渣控制技术。 该技术根据企业实际冶炼或精炼设备提出最佳脱硫工艺以及提供相应的精炼渣控制技术。 低磷钢(≤0.0050%)冶炼的精炼渣控制技术。 该技术根据企业实际冶炼或精炼设备提出最佳脱磷工艺以及提供相应的精炼渣控制技术。 低氮钢冶炼过程中脱氮和防治吸氮渣系控制技术。    氮是钢中较难去除的杂质元素,该技术主要是从改进工艺出发,在脱除部分氮的同时,尽可能防治氮从大气中的吸收。在这方面,造渣技术起着重要的作用。 铝脱氧钢吸收Al2O3 夹杂精炼渣控制技术。 铝作为强脱氧剂,在炼钢过程中有着广泛的应用。但由此形成的Al2O3夹杂对钢非常有害,该技术结合企业铝脱氧工艺,提出最佳的吸收Al2O3夹杂精炼渣系。 无铝脱氧工艺低氧钢精炼渣控制技术。 对于许多质量要求较高的钢种,采用无铝脱氧,这样必然加大了钢液脱氧难度,而合理的精炼渣控制技术会使无铝脱氧钢液氧含量显著降低。 精炼过程中夹杂物的去除和控制技术 。 该技术主要是通过合理地控制精炼渣成分来有效地控制钢液中夹杂物形成元素的含量,从而达到控制夹杂物成分和形态的根本目的。
北京科技大学 2021-04-13
冷却水自动加药控制装置
循环水中缓蚀阻垢剂的加药量由以下公式决定: 投加量(kg/h)=投加浓度×总补充水量(m3/天)/ K(浓缩倍数)×1000。根据这个原理,对数据采集量电导率、补水流量和总磷等参数进行优化决策,调整到适合的加药量,使系统中的药剂浓度在控制范围内。这种控制效果,在同类控制系统中是比较先进的。在PH5-9的范围内,电导率和总溶固含量大致成线性关系。根据已确定的浓缩倍数,设定电导率的控制范围。在循环冷却水运行过程中,通过控制排污和补水,实现浓缩倍数基本保持不变,保证循环水系统运行稳定。正确选择pH测量点和投加点,采用先进的PID控制算法,达到循环水系统中的PH值自动控制。NJHL- A型循环冷却水自动加药控制系统是以智能仪表和计算机为核心,不仅操作方便,而且智能化程度大大提高。NJHL-B型循环冷却水自动加药控制系统是以PLC可编程控制器和计算机为核心,性能和可靠性较高,价格略贵。 NJHL-A型和NJHL-B型能够适合于不同的场合以及不同用户的要求,在控制循环水腐蚀、结垢和菌藻的条件下,实现节省用水和用药的目的。计算机用于自动加药控制系统的数据采集和管理。采用大型数据库软件软件,运行于Windows2000/Windows NT 操作系统,应用软件主要窗口有测量参数显示面、控制系统流程显示面、实时和历史曲线显示面、数据记录显示面、报警记录显示、水质数据人工输入显示面、报表和曲线打印面等,能够实现企业连网。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 157 158 159
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1