高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种液态或半液态金属电池的建模方法
本发明公开了一种液态或半液态金属电池的建模方法,包括以下步骤,根据电池阻抗谱进行拟合,构建电池的阻抗谱拟合电路,根 据阻抗谱拟合电路构建电池的等效电路模型;采用对称脉冲对电池进 行混合脉冲功率性能测试,获取用于辨识电池的开路电压、电阻、电 容参数的测试数据;根据测试数据拟合电池的电动势、欧姆内阻、极 化电阻、极化电容、扩散等效电阻和扩散等效电容与 SOC 的函数关系, 辨识出等效电路模型的参数;采用安时法计算电池的 SOC;对 SOC 进 行修正,获得修正 SOC;根据修正 SOC,对等效电路模型的
华中科技大学 2021-04-14
高性能钒液流电池隔膜及其制备技术与应用
利用辐射技术研制电池的离子交换隔膜,最早从日本原子能研究所开始,出发点是代替Nafion的工艺,制备性价比更高的膜材料。电离辐射技术,特别是基于电子加速器的电子束辐射加工技术,不使用催化剂/引发剂,室温操作,高效快速, 适合大量生产。目前辐射加工技术已广泛应用于各种工业材料的生产,如电线、电缆、轮胎、发泡材料、热收缩材料等行业。本项目是在早期辐射接枝技术制备离子交换膜的基础上,在工艺体系中使用功能化离子液体代替含有阴阳离子一般离子交换功能基团,成功制备出具有更高耐热、化学稳定性、良好导电性、极为优异抗钒离子渗漏的两性离子交换膜(HUST-IL膜),并且在钒液流电池中的实际电池测试实验中电池效率优于Nafion系列膜。需要特别指出的是,本项目在制备工艺方面取得了重要突破,不需要一般阳离子交换膜中的磺化工艺,非常环保,并且在工艺上成功发展出替代传统固液接枝反应的工艺体系,避免了接枝反应的复杂工艺和质量控制问题;本项目的工艺技术,使电池隔膜的辐射制备工艺从传统的辐射接枝转变为辐射交联工艺,通过铺膜和固体膜辐照即可完成制备,与现有电线电缆片材的辐射交联工艺通用,工艺简单,极易量产和推广。 【技术优势】 (1) 本项目所得到的HUST-IL隔膜产品,其钒离子渗透率比Nafion膜(Nafion115,117)降低约1200倍,导电率提高3倍以上,电池效率实现了对Nafion膜的超越; (2) 在制备工艺方面的重要突破:不需要一般阳离子交换膜中的磺化工艺,非常环保,并且在工艺上成功发展出替代传统固液接枝反应的工艺体系,避免了接枝反应的复杂工艺和质量控制问题; (3) 本项目电池隔膜的辐射制备工艺从传统的辐射接枝转变为辐射交联工艺,通过铺膜和固体膜辐照即可完成制备,与现有电线电缆片材的辐射交联工艺通用,工艺简单,极易量产和推广。 【技术指标】 HUST-IL隔膜产品:钒离子渗透率比Nafion膜(Nafion115,117)降低约1200倍,导电率提高3倍以上,电池效率实现了对Nafion膜的超越。
华中科技大学 2023-07-19
苛刻温度环境服役的锂离子电池关键技术
锂离子电池对现代电子设备、电动汽车和储能系统至关重要,然而目前商用锂离子电池不能苛刻温度环境下使用,尤其在低温环境下能量密度严重衰减,限制了其在电动汽车、户外储能、国防军工以及深空探测等领域的应用。随着锂离子电池应用领域的不断拓展,要求锂离子电池在高温/低温兼顾条件下能提供能量输出,以保障装备正常工作,目前锂离子电池还难以达到这一要求。同时,锂离子电池作为苛刻温度环境服役的电源设备仍需克服较多的问题,如无法跨温区使用、低温无法充电、安全性能低等。 本成果攻克了复合碳负极材料、快离子输运特性正极材料和宽温域高电导率电解液体系等关键材料,解决了锂离子电池低温容量衰减严重、低温无法充电和高温/低温不能兼顾使用三大技术难题,突破了锂离子电池在-60~70℃宽温域使用技术壁垒,开发的锂离子电池产品可在高原高寒、沙漠、极寒极地、深空等全疆域使用要求。 本团队拥有教授、副教授和研究生100余人,依托中南大学“粉末冶金国家重点实验室”、“轻质高强结构材料国家级重点实验室”及“粉末冶金国家工程研究中心”等3个国家级研究和产业化平台,完成了三项技术转化。
中南大学 2023-07-18
稀土改性制备高容量锂离子电池正极材料
锂离子二次电池是继镍氢(Ni-MH)电池后最新一代可充电电池,其质量比能量是Ni-MH电池的1.5-2倍,具有工作电压高(3.6V)、安全、循环寿命长和无记忆效应的优点,工作温度范围可达-20-60℃。自1991年Sony公司用LiCoO2作为正极活性材料的锂离子二次电池商品化以来,锂离子电池目前是供不应求。它广泛地应用于笔记本电脑、个人数据助理、手提终端
西安交通大学 2021-01-12
发展了空间约束制备高稳定锂-硫电池正极材料
锂-硫电池因具有高理论能量密度且价格低廉,被认为是极具潜力的新一代 高能二次电池体系。然而,受限于硫及其放电产物硫化锂(Li2S)的绝缘特性, 以及充放电过程中形成的一系列多硫化锂中间产物易溶于电解液的缺点,导致锂 -硫电池中正极活性物质硫的利用率偏低和电池的循环稳定性欠佳,严重影响锂- 硫电池性能的发挥与实际应用。众所周知,单质硫主要以环状 S8 形式存在,而 这些易溶性多硫化物(Li2S8、Li2S6、Li2S4 等)主要产生于 S8 与 S2 之间的转 变过程中,而通过与碳材料复合可有效地解决
上海理工大学 2021-01-12
富锂层状及三元锂电池正极材料
富锂的层状结构 Mn 基氧化物及三元(NCM)材料具有高容量的特点,成本低廉,工作电压与现有电解液匹配,安全性好,考虑到振实密度,比容量等综合性能,其应用前景很好,适用于数码通讯类滇池、笔记本电脑、电动工具电池、汽车电池等。该项目具备产学研合作基础。 项目特色: 针对富锂锰基和三元正极材料首次充放电效率低,倍率性能交差,锂层中阳离子的混排、高电压下电极材料与电解液之间反应等问题,通过表面包覆、体相掺杂、颗粒微纳化和形貌控制等多种方法,以提高其电化学性能。 通过原位 XRD、XAS、EXAFS、电化学阻抗谱(EIS)、原位扫描电镜与透射电镜、扫描隧道显微镜、原位核磁共振、同步辐射和中子衍射等技术,获得无机材料及相关体系的原位分析与诊断新方法。 优化设计并研制新型电极,电池制备工艺技术,构筑高容量,长循环稳定性的新型锂电池。 市场应用前景: 扩大富锂层状与三元电极材料与新型锂电池技术成果的推广力度,促成成果转化和产业化,使中小型企业规模成长,提升电池行业研发水平和产业链结构优化,带动锂电池及储能产业发展。 
南开大学 2021-04-13
光催化性能新型半导体复合颗粒的制备技术
环境污染的日益加剧时刻威胁着人类的生命健康。温室效应带来的全球变暖义威胁着人类的生存家园。如何面对和解决这些环境问题一直是科学家们努力的研究方向之一。光催化技术作为一种新兴的废气和废水深度绿色处理技术,受到人们广泛的关注,而制备具有高效光催化能力的催化剂则是这一技术的核心。目前,TiO2及其复合材料被广泛用作光催化反应的催化剂。但纳米TiO2只吸收紫外光,通过改性能够将TiO2的光吸收范围拓宽至可见光区。该方面的研究能够提高太阳能利用率,具有重要意义。本技术主要以催化降解水中污染物和催化还原CO2的效果作为评价标准对纳米TiO:实施多种改性方案,旨在以新型方法制备出新型结构并且催化效率高的光催化剂。首先以微波法制备了结构新颖,可用于光敏剂的酞菁。然后分别制备了水溶性的负载型酞菁及酞菁敏化TiO2纳米颗粒,并实施了金属氧化物复合、非金属与金属氧化物共复合纳米TiO2颗粒的制备及光催化应用。
北京化工大学 2021-02-01
一种用于VOCs处理的蓄热式催化燃烧装置
发明(设计)人:陆朝阳, 张纪文, 徐遵主, 蒋海涛, 李明, 孙永嘉。本发明公开了一种用于VOCs处理的蓄热式催化燃烧装置,包括支撑座,所述支撑座的顶面上设有换气装置和催化燃烧装置;通过监控装置实时监测催化燃烧装置内部的压降变化,根据压降变化判断金属网型催化剂表面积碳的严重情况,压降越大,积碳情况越严重,同时监控装置能够在压降的作用下获取动能,使监控装置能够驱动传动装置运动,通过传动装置对催化燃烧装置、换向装置、上出气装置、下出气装置进行控制,使两个金属网型催化剂能够自动交替投入使用,同时能够自动对积碳情况严重的金属网型催化剂进行清理作业,自动化程度高,人工成本低,而且不需要终止VOCs废气处理过程,VOCs废气处理效率高,提高了该用于VOCs处理的蓄热式催化燃烧装置的实用性。
南京大学 2021-04-10
利用晶相共生现象可控合成异质结光催化材料
基于半导体异质结概念,首次通过工艺简单,成本低廉熔融盐法合成一系列钽酸钙基半导体异质结复合材料,发现了两元及多元半导体复合物组分及其含量可通过改变前驱物比例简单调控,证明该异质结复合物相,组分变化与光催化制氢性能有着密切关系,阐明不同钽酸钙晶相界面异质结形成促进光生电荷有效分离机制,极大地提高光催化制氢性能。
上海理工大学 2021-04-10
酶催化制备光学活性(S)-丁呋洛尔的方法
(S)-丁呋洛尔化学名为(S)-1-(7-乙基苯并呋喃-2-基)-2-叔丁基氨基-1-乙醇,被广泛用作研究细胞色素P450(CYP)酶的底物,对β-肾上腺素受体具有无选择性阻滞作用,可用于治疗轻、中度高血压。以往制备光学纯的(S)-丁呋洛尔的方法主要是酯化拆分和化学催化不对称氢化还原,这两种方法均存在原料利用率低或成本昂贵等问题。本技术利用(R)-醇腈酶((R)-Oxynitrilase)作为一种生物催化剂具有的高效手性转化能力,通过催化不对称氰化反应获得制备(S)-丁呋洛尔的关键手性中间体,开发出一条新的(S)-丁呋洛尔合成路线。
南京工业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 76 77 78
  • ...
  • 165 166 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1