高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
长寿命磷酸盐钠离子电池正极材料
        研发团队针对NASICON型结构钠离子电池正极材料面临的瓶颈问题,通过新颖的合成方法和材料晶体结构设计理念,成功开发了具有自主知识产权的长寿命、高功率和低成本的钠离子电池及其超稳定的正极材料。材料合成方法简单,反应条件温和,不需要特殊设备,目前已完成实验室中试,具备了公斤级的制备能力。成果具有高的振实密度,可实现高体积能量密度,具有非常优秀的实用化潜力。         意向开展成果转化的前提条件:中试放大及产业化工艺开发资金支持
东北师范大学 2025-05-16
锂离子电池材料
本发明涉及一种锂离子电池正极材料原位碳包覆硼酸锰锂碳复合材料,是 将锂源、锰源、硼源和碳源按比例在分散溶剂中研磨混合均匀,烘干得粉体,再 于管式炉中将煅烧得到六方或单斜相的硼酸锰锂与碳的复合材料。将所得产品 制备成锂离子电池极片组装成电池,有较高的放电容量和良好的循环稳定性。 本发明采用固相方法,耗能少,可批量工业化生产,已申报国家发明专利。
山东大学 2021-04-13
锂离子电池电极材料
锂离子电池负极材料主要包括天然石墨、人造石墨、焦碳和碳纤维等。作为电极材 料的活性物质,对碳材料的要求有许多方面:如放电比容量、颗粒大小和比表面积、电 极极化性能、充放电稳定性等。目前国内外有许多研究单位在探索新的制备工艺来改善 电极性能。 采用常压干燥技术,成功地制备了碳气凝胶材料,通过控制制备条件,实现了碳气 凝胶材料微结构人为裁剪与控制。这些新型储能器件具有重量轻、体能密度高、无污染 等优点,是新一代绿色能源材料。多孔碳电极用于锂电池将优于枝晶锂电池,传统的电 极充电时枝晶会在阴极上成核,当枝晶越过电极跨度时将造成短路,从而限制了充电次 数。用多孔碳做电极时,锂离子嵌在石墨结构中,防止了锂金属的沉积和枝晶的形成, 而丰富的孔洞可提高电极与电池溶液的接触面积。碳气凝胶是由间苯二酚和甲醛在碱性 催化剂作用下,通过溶胶-凝胶和炭化工艺制备而成的。通过控制水和催化剂的用量, 可以控制其孔洞结构和密度,它的干燥过程也正由管来的超临界干燥向常压干燥发展, 以便降低气制备成本,改善其性能,使其得到更广泛的应用。碳气凝胶也可能成为电池 材料的理想选择。 
同济大学 2021-04-11
锂空气电池及相关材料
该项目涉及一种含新型催化剂的锂空气电池正极及其制备方法。锂空气电池正极材料的质量组成:催化剂为 5-30%,碳材料为 40-80%,粘结剂为 5-30%。催化剂为金属纳米颗粒(20-60nm)高分散在微米级的碳片上的复合材料;所述金属纳米颗粒为钴、镍、铜、锌、锰、铬、钼、钒或钇。碳材料包括乙炔黑、超导炭黑、碳纤维、石墨烯、超导炭黑、科琴黑、聚苯胺、聚吡咯和聚噻吩一种或两种。粘结剂为聚四氟乙烯、聚偏二氟乙烯、羧甲基纤维素钠、聚乙二醇和丁苯树脂一种或两种以上。本发明的优点是:该催化剂可促进氧的还原,降低充电过电位,在锂空气电池中表现出优异的电催化性能;而且该催化剂工艺简单,采用环保无毒的试剂,在锂空气电池领域有广泛的应用前景。
南开大学 2021-02-01
锂空电池及关键材料
研究团队设计和合成出一种具有开放式结构的剑麻状Co9S8材料,并首次将其作为锂空气电池正极。其开放状结构不仅为反应产物提供了丰富储存空间,有效避免不溶Li2O2对空气电极的堵塞。而且,特殊的开放式结构有利于氧气的俘获与释放,为高效快速电极反应提供保障;其次,Co9S8具有优异的催化活性,有效改善了氧气反应动力学,大幅度提高了电极反应速度;最后,Co9S8且具有良好的氧气亲和性,可以诱导氧气在Co9S8纳米棒表面反应生成过氧化锂,形成优异的Li2O2/电极接触界面,从而有利于充电过程中充分发挥Co9S8的催化效率,促进Li2O2的完全分解。所以,该Co9S8空气电极综合解决了上述三个方面的问题,相应的锂空电池表现出优异的电化学性能。在50 mA g-1的电流密度下,可以获得高达~6875 mAh g-1的放电容量,在控制放电容量为1000 mAh g-1的条件下,可以将充放电过电位降低至0.57 V,优于目前已报道的氧化物基催化剂。
厦门大学 2021-04-11
锂硫电池及关键材料
“双高”硫电极复合材料。要实现可超越现有锂离子电池的高比能锂硫电池的商业化应用,不仅需要提高复合正极材料的硫含量(high sulfur content, HSC),还需要有高的硫复合电极的硫载量(high sulfur loading, HSL),形成所谓“双高”电极。研究团队采用模板法构筑了一种新型的准二维多孔蜂窝状Co@N-C材料作为锂硫电池的载硫基体。蜂窝状的结构具有最高的密度、最大的可利用空间以及所需要的材料最少等优势,将这样一种特殊的结构作为锂硫电池的骨架材料,不仅让具有高比表面积的单片蜂窝状实现高含量的硫复合,还可以通过多层蜂窝片的有序堆积实现高的载硫量,同时保持了Co-N的“双催化”、多功能的作用,取得了优异的电化学性能(ACS Nano, 2017,11(11), 11417-11424)。非碳类Co4N基体材料。研究团队首次制备了非碳类介孔Co4N微球作为硫复合电极基体材料,实现了高达95%的载硫量,并取得了优异的电化学性能;同时,该Co4N基体材料对充放电过程中间多硫化物具有更强的亲和性、更快的吸附速度、更高的吸附量,是一种理想的硫复合电极基体材料(ACS Nano, 2017, 11, 6031-6039)。
厦门大学 2021-04-11
燃料电池及其相关材料
能源危机与环境污染已成为限制当今人类社会发展的两个问题,而解决能源危机与环境污染的主要手段就是大力发展新能源技术。新能源技术中的燃料电池技术以其环境污染少,发电效率高而得到人们越来越多的重视。在燃料电池中,燃料中的化学能直接转化为电能,发电效率不受卡洛循环限制。目前最具有应用前景的是质子交换膜燃料电池技术和固体氧化物燃料电池技术。燃料电池技术应用的关键在与新材料的开发,基于材料的优化得到更好的燃料电池产电输出性能。我们基于固态离子理论,设计了一系列燃料电池电极新材料及新结构,以提高电池输出性能为目的,开发了一系列高性能的阳极功能材料,阴极层材料与新结构,并取得自主知识产权,申请发明专利多项,目前已有9项相关专利获得授权,在国际上发表大量学术论文。在质子交换膜燃料电池制备方面,我们开发了低成本的热喷涂法制备质子交换膜燃料电池的技术,并取得中国发明专利的授权,获取自主知识产权,并得到应用,成功制备了50-1000 W的质子交换膜燃料电池电池堆,并改造后应用于便携式电源设计与分散发电。结合使用储氢材料罐,可得到一套车用发电系统;在固体氧化物燃料电池单电池制备方面,我们开发了一套基于阳极基底流延制备、电解质与阴极层喷涂制备共烧结的单电池制备工艺,并用于制备大面积的平板固体氧化物燃料电池,并组装了平板电池堆,得到的单电池性能优越。在前期科技部863项目的资助下,我们开发了一系列阳极功能层材料,用于以甲烷、煤层气以及生物质气为燃料的固体氧化物燃料电池发电,得到了较好的发电稳定性和温度适应性。目前,我们已经开发了便携式的质子交换膜燃料电池发电装置,可用于便携式供电与不间断电源;在前期大量的工作基础上,我们还开发了完备的固体氧化物燃料电池材料生产技术和固体氧化物燃料电池单电池制备技术,将可以为将来的燃料电池产业化与商业应用提供基础。●应用前景: 目前燃料电池技术应用的最大障碍在于其高成本、低稳定性,随着人们对新能源技术进步的要求不断提高和燃料电池技术的进步,燃料电池技术应用的市场将越来越大。目前燃料电池的低成本制备在新材料开发的促进下,取得了较大进展,燃料电池技术商业化示范运行目前已在美国、日本、德国等国家开展,技术成熟之后在世界范围内将会有更大的市场前景。
南京工业大学 2021-04-13
锂空气电池及相关材料
该项目涉及一种含新型催化剂的锂空气电池正极及其制备方法。 锂空气电池正极材料的质量组成:催化剂为 5-30%,碳材料为 40-80%, 粘结剂为 5-30%。催化剂为金属纳米颗粒(20-60nm)高分散在微米级 的碳片上的复合材料;所述金属纳米颗粒为钴、镍、铜、锌、锰、铬、 钼、钒或钇。碳材料包括乙炔黑、超导炭黑、碳纤维、石墨烯、超导 炭黑、科琴黑、聚苯胺、聚吡咯和聚噻吩一种或两种。粘结剂为聚四 氟乙烯、聚偏二氟乙烯、羧甲基纤维素钠、聚乙二醇和丁苯树脂一种 或两种以上。本发明的优点是:该催化剂可促进氧的还原,降低充电 过电位,在锂空气电池中表现出优异的电催化性能;而且该催化剂工 艺简单,采用环保无毒的试剂,在锂空气电池领域有广泛的应用前景。专利号:201310524508.7 
南开大学 2021-04-13
锂离子电池关键材料
锂离子电池作为新一代的清洁、环保、可再生二次能源,由于具有能量密度高、工作电压高、循环寿命长以及自放电小等诸多优点,被广泛应用于便携式电子设备中,并且有望在电动汽车、航空航天、医疗器械和军事国防等尖端科技领域得到大规模应用。特别是能源和环境危机产生以来,“十二五”规划纲要相应的提出“节能减排”的目标,电动汽车已被提高到实用化议程。这为锂离子电池尤其是动力电池的大规模开发应用提供了广阔的前景,这同时也迫切要求锂离子电池的能量密度和功率密度得到进一步提高。正、负极材料作为锂离
江苏大学 2021-04-14
新型电池材料绿色合成与高比能电池应用
高比能电池面向国家重大需求,仅锂电池 2017 年市场规模已超过 1 亿 kWh,并且随着电动汽车、规模储能市场的迅速发展,电池需求快速增加,市场规模很快将超过 3000 亿元。 本项目为陈军教授团队十余年的研发成果,主要包含新型锂电池、钠电池、锌电池等新能源电池,可用于电动汽车、可再生能源风光发电储能等领域。 1. 开发了两类新型锂电池正极材料:取代型锰系尖晶石正极材料和掺杂型超高镍含量三元层状材料。这两种材料原料便宜、制备工艺(连续共沉淀与梯度加热)简单,成本优势明显,并且性能优异,产品晶相纯度高、形貌规整、振实密度大、长周期循环稳定性好。 2. 针对传统无机电极材料的不足,研发有机电极材料,它们由高丰度的 C、H、O、N 等元素组成,具有易合成、低成本、绿色环保等突出优点,并且由于可实现多电子反应,容量大、能量密度高,此外有机电极材料柔韧性强,在柔性可折叠等新颖结构电池体系中应用前景巨大。 部分有机电极材料在实验室中已实现公斤级制备,并组装 Ah 级软包全电池,经 18 所等权威机构检测鉴定,能量密度超过 300Wh/kg,通过安全性测试。计划 5 年内完成 1-2 种有机电极材料的中试,并实现部分电池产品的应用示范,具有清洁环保优势。 可合作宏量制备及大容量电池装配,推进中试和产业化,将产生显著经济效益、环境效益和社会效益。
南开大学 2021-02-01
1 2 3 4 5 6
  • ...
  • 233 234 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1