高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
锂离子电池富锂锰基正极材料的可控制备
北京大学工学院课题组在国内较早开展富锂锰基正极材料相关研究,在阴离子氧化还原过程的调制、阴离子电荷补偿机理、阴离子氧化还原过程的激发及阴离子氧化还原富锂锰基材料制备研究中取得了一系列重要进展。该研究构筑了一种O2型具有单层Li2MnO3超结构的富锂材料,可以提供400mAhg可逆容量,能量密度高达1360wh/kg,是目前锂离子电池锰基富锂正极材料最高可逆容量。这种材料通过一个单层的Li2MnO3,激活稳定的阴离子氧的氧化还原反应,形成一个高度可逆充放电循环。
北京大学 2021-02-01
高性能动力电池高镍系三元正极材料
一、项目简介动力锂离子电池在社会生产和生活中具有广泛的应用,比如新能源汽车。发展高能量动力锂离子电池关键之一就是发展具备高储能能力的正极电极材料。高镍系镍钴锰酸锂 LiNixCoyMnzO2(NCM)具有高的储能容量(>200 mAh/g)、高的工作电压和理论能量密度(800 Wh/kg),能够满足单体电池能量密度的要求,是当前重点研究对象。本项目成功发展高镍系三元正极材料,包括两个类别即 NCM-1 和 NCM-2。NCM-1 展示了优异的电化学性能,在 2.7-4.5 V 工作电压区间和 0.1C 倍率下放电比容量大约 210 mAh/g;当倍率增加到 5C 时,放电比容量依然可以达到 150mAh/g;在 0.5 C 倍率下,经过 100 次充放电循环后,其容量保持率在 95%以上。NCM-2 放点比容量较低,但是稳定性能更优。二、产品性能优势该系列高镍系三元正极材料具有高的克比容量、优异的循环稳定性和倍率性能。同时,该系列产品采用目前工业化制备方法,便于推广。三、市场前景及应用2018 年中国锂电正极材料市场总产值达 540 亿元,其中三元正极材料占比最大,达 258 亿,总占
中山大学 2021-04-10
钙钛矿光伏材料/钙钛矿太阳能电池
2021 年 3 月 26 日,Science(《科学》)在线发表了西北工业大学黄维院士团队的研究成果 Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity。此项研究独创性地提出以一种多功能的“离子液体”作为溶剂来替代传统的有毒的有机溶剂制备钙钛矿光伏材料,用这一方法制备的材料具有稳定性高、制备工艺简单等优势。相关研究成果解决了传统钙钛矿光伏材料制备过程中的世界性难题,实现了光伏领域的重大突破。离子液体及其制备的钙钛矿太阳能电池 团队研发的可折叠柔性电子产品。目前,全球以“光伏”为代表的可再生能源产业链驶入发展快车道。其中,钙钛矿光伏功不可没,它相比传统太阳能电池板中使用的硅晶体,不仅更便宜、更轻薄、可变型,同时成本也更低廉、更环保,在应用范围上将产生颠覆性变革。因此,钙钛矿光伏材料的研究已经成为各国科学家追逐的“热点”。“未来,沙漠腹地、楼宇外墙、手机等都不再需要传统电池,只需要一块更低廉、更清洁,薄如纸张的钙钛矿太阳能电池就能够满足所需。同时,还可以应用在柔性可穿戴、航天器搭载等重要领域。” 团队“大师兄”晁凌锋对钙钛矿光伏材料应用前景充满信心。 黄维院士团队致力于钙钛矿光伏材料研究,通过原始创新解决材料不稳定、光电转化率不高、工艺制备复杂且污染性较高等卡脖子难题。 
西北工业大学 2021-04-13
一种用于钠离子电池的负极材料及其制备方法
本发明公开了一种钠离子电池负极材料,其特征在于,该电极 材料为碳和硫形成的复合材料,其中,所述复合材料中的碳由芳香族 化合物碳化热解得到,该复合材料中的硫可以是以单质硫形式,碳硫 键形式或氧硫键形式存在,或者其中的多种形式存在。本发明还公开 了一种钠离子电池电极材料的制备方法技巧应用。本发明的材料用作 钠离子电池负极具有高的比容量和良好的循环稳定性的特点,其制备 方法简单,原料来源广泛,成本低廉,绿色环保,安全无害。
华中科技大学 2021-04-14
邢伟教授团队在团簇催化和稠环芳烃电极材料等方面取得系列进展
受益于自优化配体效应和原子精度结构,Pt团簇基电催化剂表现出高质量活性、优异稳定性和抗CO毒化能力。理论计算证实,增强的电催化性能归因于三苯基膦配体的双重效应,它不仅可以调节原子级精确Pt团簇的形成,还可以改变Pt原子的d带中心,从而有利于获得*H、*OH 和 CO等中间体的良好吸附动力学。
中国石油大学(华东) 2022-05-31
结合产业化发展出原位制备硫化锂/微孔碳复合电极材料的新技 术
锂-硫电池真正能够满足实用化需求,除了需要解决前述硫正极材料的导电 性、体积膨胀以及多硫化物的溶解等问题外,还存在锂-硫电池中因使用金属锂 作为负极可能导致的安全问题,鉴于此,团队研究者设计了一种原位制备硫化锂 /微孔碳复合电极材料的新方法,将前期研究制备的碳/硫复合电极材料延伸到与 产业化结合,实现商用锂离子电池的电解液在锂-硫电池中的使用,因此,该方 法可满足现有锂离子电池生产工艺需求,并与国际知名电池企业 SAFT 公司开展 相关技术合作。
上海理工大学 2021-01-12
2024新能源电池行业趋势等离子清洗机如何成为动力电池组装的“隐形功臣”?
在 2024 年全球动力电池产业冲刺 400Wh/kg 能量密度的关键节点,等离子清洗机正以革命性工艺革新推动着电池制造的质效提升。这个看似普通的工业设备,正在动力电池极片处理、电芯封装等关键工序中扮演着 "精密美容师" 的角色,成为保障电池安全性和稳定性的核心环节。
山东罗丹尼分析仪器有限公司 2025-07-01
电池安全
欧阳明高院士长期从事节能与新能源汽车新型动力系统研究(包括电控内燃机、燃料电池发动机、动力电池系统、多能源混合动力等),尤其是在面向排放控制的发动机新型电控高压喷油原理与系统研制、保障电动汽车安全性的锂离子电池热失控机理与主动防控,优化燃料电池耐久性的燃料电池/动力电池混合动力设计与控制方法等三方面开展了从理论创新、技术突破到推广应用的系统性工作,建立了汽车动力系统学研究与人才培养体系。根据中国新能源汽车动力电池比能量发展的趋势,我们很快就会向300瓦时/公斤的所谓的高镍三元811电池很快就会进入市场,清华大学专门建了电池安全实验室开展相关的基础研究和技术开发。目前清华大学电池安全实验室跟国内外企业和研究机构开展了广泛的合作,包括宝马、奔驰、日产等大公司。研究重点是在热失控的三个方面,一是热失控的诱因,包括热、电、机械的原因。二是热失控发生的机理究竟是什么,从而在材料设计层面加以防护。三是热蔓延,一旦单体电池防止不了热失控,就得有二次防护手段,就是在系统层面要切断热失控的蔓延,只要切断蔓延就可以防止事故。我们对高比能量电池的热失控控制,不仅靠材料本身,还要从系统层面来进行。目前,在电池管理系统方面,国内的产品的功能不足、精度不够,尤其是安全功能是不全,因此需要加大电池管理系统的研发力度。清华在电池管理系统的积淀比较丰富,已经获得65项专利授权,这些专利在国内外著名公司合作中得到了应用,其中部分专利也授权给了奔驰汽车公司。锂离子动力电池高比能是全世界范围的发展方向和趋势,把握高比能量与安全性之间的平衡点是关键。基于各国动力电池技术路线的比较,短期是液态电解液的锂离子电池,下一步将会向固态电池方向发展。综合考虑电池成本和动力电池的发展方向,我们建议我国也应该走类似的路径,即短期是液态电解质,发展高镍三元正极和硅炭负极,通过电池管理系统和热蔓延的抑制来防止安全事故发生,这类电池能够满足电动汽车500公里续驶里程的要求。
清华大学 2021-04-13
水果电池
宁波华茂文教股份有限公司 2021-08-23
电池原理
宁波华茂文教股份有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 240 241 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1