高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
合成非富勒烯三维网络结构的高效太阳能电池受体材料
合成的一种定位三氟甲基取代的高效有机太阳能电池受体材料,该材料可通过H/J聚集的协同作用形成具有更多电子跳跃传输结点的三维网络结构,可极大改善电荷在分子间的传输,大幅提高器件性能。
南方科技大学 2021-04-14
一种锂空气电池用电解液及相应的电池产品
本发明公开了一种锂空气电池,该锂空气电池包括空气正极、 锂负极以及填充在空气正极与锂负极之间的有机电解液,该有机电解 液中包含非质子有机溶剂、锂盐和可溶性催化剂,其中可溶性催化剂 可选择为酞菁过渡金属化合物及其衍生物,例如酞菁铁、以及羧基化 或磺酸化的酞菁铁等。本发明还公开了相应的锂空气电池用电解液。 通过本发明,能够为锂空气电池内部提供一种溶液相的催化体系,这 样即便有大量固体的氧化锂或过氧化锂形成在空气正极的表面,仍然 能够保证催化剂与反应物之间形成良好的接触,相应地,可以使得锂 空气电池的充电电压降低、放电电压升高,与此同时还能提高电池倍 率性能、增加容量,并改善循环性能。
华中科技大学 2021-04-13
山东峰泉新材料有限公司
山东峰泉新材料有限公司 2024-09-23
山东乾佑新材料有限公司
山东乾佑新材料有限公司 2025-04-07
新型金属氢燃料电池
近日,上海大学材料科学与工程学院教授汪宏斌团队开发的氢燃料电池无人机及无人小车载新型金属氢燃料电池电堆,通过进一步降低动力系统自重提高能效,使其续航时间长达2小时,满足10000平方米空间连续作业,且搭载气瓶充气只需3-5分钟,大大缩短了充电时间。 随着新冠疫情暴发,各地防疫工作迅速展开,无人机以及无人小车广泛应用于短途物资配送、消毒液喷洒、广播宣传、布控监测等多个领域。传统机型多采用锂电池系统作为动力,工作时长短且充电时间长,影响防疫工作效率。相较于锂电池动力系统,氢燃料电池具有清洁环保、能量密度高、充气快、安全等性能优势,能够满足无人机及小车长时间、高强度作业。 目前,汪宏斌团队开发的氢燃料电池无人机及小车搭载消毒装置,已经应用于地方疫情防控工作中,形成了一套以氢燃料电池作为动力系统、高续航、高效率的“陆-空”立体无人防控系统。 浙江省金华市智能制造产业园的企业复工前夕,氢燃料电池无人机在园区内进行了全面消毒作业。此次用于消毒作业的无人机搭载了1.5Kw金属电堆,配置了15kg消毒液,续航里程达2小时。除此之外,无人机还在金华市多个乡镇、街道、社区内进行了广播宣传和消毒作业,大大节省了防疫期间的用人成本,减少了人员聚集带来的疫情传播风险。点击查看原文
上海大学 2021-04-10
高效氢燃料电池技术
1)质子交换膜燃料电池电堆 质子交换膜燃料电池是指一类以质子交换膜作为电解质的燃料电池体系,这种燃料电池也经常被称为固态聚合物燃料电池,电池中包括质子交换膜、催化剂层、气体扩散层、双极板,一般将质子交换膜、催化剂层及气体扩散层电极压成一体,并称为膜电极集合体。 研究组目前掌握质子交换膜燃料电池电堆的关键技术,包括各关键材料的结构、特性,并开展了大量研究实验分析环境湿度、工作压力、工作温度、反应气体条件、燃料利用率和空气利用率等对电池电压-电流性能的影响。已有定型产品,具备科技成果的技术转化能力。 2)车用燃料电池系统 用燃料电池做电源驱动汽车是电动汽车的一种,其电池的能量是通过氢气和氧气的化学作用,而不是经过燃烧,直接变成电能或的。燃料电池的化学反应过程不会产生有害产物,因此燃料电池车辆是无污染汽车,燃料电池的能量转换效率比内燃机要高2~3倍,因此从能源的利用和环境保护方面,燃料电池汽车是一种理想的车辆。具备产业化技术能力。 3)军用燃料电池系统 军事上的应用是燃料电池最主要的也是最适合的市场之一,其最初就是作为宇宙飞船或潜艇使用的数千瓦级能源而开发的。此后,由于各国政府尤其是加拿大、美国和德国对质子交换膜燃料电池用于航空航天和军事领域研究的重视和资助,使得其技术越来越成熟,性能日益提高。 针对军事应用领域的潜艇动力源、通信指挥系统电源、军事备用电源、应急照明电源以及航空航天领域等,研制一款氢能备用电源产品,采用箱柜式机体外壳,内部可根据需要配置单个或多个质子交换膜燃料电池电堆模块,并外置多个固态氢存储装置,满足各种用电需求。
江苏师范大学 2021-04-11
小型低醇类燃料电池
小型燃料电池的基本要求应是可以室温快速启动、工作温度低、寿命长、比功率和比能量高、燃料和氧化剂便宜易得、易储存和携带(无毒或低毒,或者有毒物无外渗透问题)、且整体体积小等。根据燃料电池的分类及工作原理,只有低醇类质子交换膜燃料电池最接近这一要求。但质子交换膜燃料电池商品化必须解决成本和燃料两大问题。据报,目前质子交换膜燃料电池成本已降至每千瓦数百美元,通过批量生产和提高技术水平,还有可能进一步降低成本。最理想的燃料是纯氢,但储氢材料及其安全性仍是极大困难。含一个碳的甲醇(CH3OH)在催化剂的作用下部分氧化、并经净化制富氢,是一个理想的替代氢源,而且原有的加油系统可以共用。但甲醇蒸汽有毒(会造成眼睛失明)且甲醇易渗透污染地下水,因此,直接甲醇燃料电池必须很好地解决密封和环保处理问题。而这一困难,对于间接甲醇燃料电池就比较容易解决。所谓间接甲醇燃料电池,就是将燃料系统分开,先用甲醇催化氧化制出富氢,而后再进入电池作为燃料。
厦门大学 2021-04-11
燃料电池催化剂
质子交换膜燃料电池(PEMFC)具有能量转换效率高和环境友好等优点, 是电动汽车的理想动力源。但燃料电池电动汽车(FCV)的商业化,必须解决基 于碳载钳(Pt/C)催化剂FCV的高成本问题。 自2009年美国科学家在Science杂志报道氮参杂碳纳米管(NC)具有潜在 的氧还原(0RR)催化活性以来,化学家与材料科学家一直在探寻如何进一步 提高NC材料的0RR催化活性的方法,以代替目前燃料电池发动机中的Pt/C催化剂。因此,我们的研究团队基于氮参杂石墨烯(NG)材料,在国际上首次通过 “NG分子结构一NG电导率一0RR催化活性”的关联,找到了该科学难题的突破 点.我们在分子结构模拟的基础上,认识到三种氮参杂NG材料中,既唳型和既 咯型具有二维平面结构,使NG保持了石墨烯原有的平面共辗大兀键结构,具 有良好的导电性,因而具有优异的0RR催化活性;而丁基型NG为三维空间不 平整结构,破坏了石墨烯原有的二维平面共巍大e键结构,导电性差,因而0RR 催化活性低。因此,有效的氮参杂应以唬唳型和唬咯型为主,尽可能减少甚至 杜绝丁基型NG的形成。我们利用层状材料(LM)的层间限域效应,通过调制LM 层间距,在LM层间插入苯胺单体,层间聚合,然后热解的方法,获得平面氮参杂 达90%以上的NG材料。其催化0RR的半波电位仅比Pt/C催化剂落后60mV,是传 统方法下获得的NG材料0RR催化活性的54倍,以该材料为正极催化剂的质子 交换膜燃料电池的输出功率达580mW/cm ,与Pt/C催化剂的0RR活性处于同一 个数量级,为世界领先水平。我们开发的此类新型NG材料已经具备了在燃料 电池发动机中完全替代Pt/C催化剂的可能性。LM层间近乎封闭的扁平反应空间 不仅克服了传统开放体系下合成的NG以丁基型为主,导电性差,活性低的弊病, 而且也克服了开放体系下因掺N效率低而导致合成NG成本高的问题。该研究成 果意味着,长期困扰燃料电池实用化的高成本问题将不再是瓶颈问题。
重庆大学 2021-04-11
燃料电池微电源系统
进入 21 世纪以来,电子与信息技术获得了飞速发展,各类微小型便携式电子产品如手机、笔记本电脑、数码影像设备等相继涌现出来,给人们的生活带来了极大的便利。但是电子产品升级换代的加快和产品功能的日趋多样化,对现有微电源系统(锂离子电池、镍氢电池等)性能提出越来越高的要求,电子产品设计中的电源供需矛盾日益突出,形成所谓的“能量鸿沟”( Power Gap )。发展新的高比能电源系统已不可避免地成为突破下一代便携式电子产品发展瓶颈的紧迫任务。基于微机电系统( MEMS )技术的燃料电池微电源系统,因具有高比能、高效率、清洁环保、使用方便等突出优点而广受关注。其理论能量密度为现有锂离子电池 10 倍以上、能量效率可达 60~70% 、工作过程零排放、可瞬间完成燃料加注,是面向便携式电子产品的新一代理想替代电源。
大连理工大学 2021-04-13
水系热化学电池
9 月 11 日,《科学》(Science)以 First Release 形式刊发了武汉光电国家研 究中心周军教授团队最新研究进展 “Thermosensitive-crystallization boosted liquid thermocells for low-grade heat harvesting”。该研究工作第一署名单位为华中科技大学武汉光电国家研究中心,博士生余帛阳、段将将副教授为共同第一作者,周军为通讯作者。此外,论文合作者还包括武汉大学化学与分子科学学院丛恒将副教授、周军团队多名研究生(谢文科、柳容、庄欣妍、王卉、齐备)、华中科技大学材料科学与工程学院徐鸣教授和中国科学院北京纳米能源与系统研究所王中林院士等。
华中科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 21 22 23
  • ...
  • 243 244 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1