高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
长电 ERP 系统
南京工程学院 2021-04-13
长电 MES 系统
南京工程学院 2021-04-13
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。 燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。 SA-Rh/CN的合成路径示意图及其表征 在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。 这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。 本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。 论文链接: https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
电现象资源箱
电现象资源箱  型号:QWD1209 实验清单: 摩擦起电实验 简单电路实验 导体与绝缘体判断实验 电能的转化实验
青华科教仪器有限公司 2021-08-23
51008电和磁
宁波华茂文教股份有限公司 2021-08-23
验电连接杆
产品详细介绍
天津市春合体育用品有限公司(天津市春合体育用品厂) 2021-08-23
HIT6503高精度伺服运动控制器
为解决数控技术的核心部分过分依赖国外的问题,由原航天工业部资助,历时三年的时间成功地开发了 HIT6503型精度伺服运动控制器,并于1997年荣获航天工业部科技进步三等奖。 由于采用数字信号处理器MC1401片组及可编程逻辑器件,该控制器具有较高的集成度,并可提供极其精细的控制输出;变加速控制使系统的起停更平稳;内置的速度前馈控制可显著地改善系统的动态性能。该控制器采用增量式编码器(或光栅尺),具有可选择的控制输出(DAC输出或PWM输出),可用于交、直流伺服电机或液压、气动伺服控制。
北京交通大学 2021-04-13
Varedan线性伺服放大器/驱动器
产品详细介绍高性能线性伺服驱动器     美国Varedan技术公司致力于高性能线性伺服驱动器/放大器,PWM伺服驱动器以及运动控制卡的开发和生产。可以针对客户应用提供OEM定制产品和服务。     作为Varedan公司的合作伙伴,北京慧摩森电子系统技术有限公司负责Varedan公司产品在中国的销售和技术支持。 LA系列线性伺服驱动器及控制器简介    Varedan线性伺服驱动器是当今市场上性能最好的线性伺服驱动器品牌。LA系列产品适用于低噪声、高带宽以及电流过零时无失真的场合,可驱动单相有刷电机或音圈电机、三相无刷电机。 LA线性伺服驱动器在应用中验证了它的高可靠性,其前提是健壮设计和完善的质量控制流程。产品加装扩展错误保护电路,每件产品都经过严格的自动测试。快速及方便调整是LA系列驱动器的特点。针对不同的电机和负载,Varedan线性驱动器独有的自动平衡功能让用户通过简单的按钮功能实现驱动器与电机配合的优化,达到最好系统特性。整个过程仅需几秒钟,不需要任何辅助工具和设备。    LA标准系列线性伺服驱动器持续功率有200W、400W、500W、800W和1500W等系列,最大峰值功率可达6000W。 Varedan线性伺服驱动器的优势 Ø 过载时的安全操作区(SOA)保护功能Ø 高带宽(10kHz)以实现更好的系统响应Ø 超净线性输出有效抑制辐射噪声Ø 无失真过零实现准确定位Ø 基于DSP的设计保证性能,可靠性及方便调试Ø 扩展内部保护监测功能提供了可靠的性能Ø自动均衡特性可以自动平衡驱动器及负载Ø 所有设定功能数字化,不需分压计来作调整Ø 采用高速串口实现可编程设置Ø 固态存储器保持所有参数Ø 多种供货模式以满足不同形式的电机和反馈组合 感谢您对我们产品的关注如果您对Varedan线性驱动器产品感兴趣,可以和我们通过以下方式联系:E-Mail:sales@bjsm.com.cn  或致电:010-51734876、77    展会预告:2012中国国际运动控制技术展览会 展会时间:2012年4月25-27日 展会地址:上海世博展览馆*上海市国展路1009号  展位:4号馆A139  更多产品信息请联系:网址:www.bjsm.com.cn 或发邮件至 sales@bjsm.com.cn 或致电 010-51734876、77    
北京慧摩森电子系统技术有限公司 2021-08-23
977HP油氢压差阀+977HP差压阀说明书+977HP
产品详细介绍深圳市贝斯特燃气设备陈小姐13537704290一级代理商现货供费西尔原装进口977HP差压阀,所示的977HP差压调节阀主要用于发电机组密封油系统为调节发电机密封瓦处油、氢压差而设计的。通过两根引压管将发电机密封瓦处的油压和氢压反馈到压差阀。不管氢压力如何变化,977HP压差阀的平衡系统都能自动调节阀口的开度准确地控制压差阀出口流量最终实现油、氢压差的平衡。说明书977HP调节阀应美国原装进品977HP油氢差压调节阀FISHER自立式调节阀(产品别名:977HP密封油系统差压阀、977HP密封油差压阀、977HP压差阀应用原理:977HP油氢差压调节阀用于发电机组密封油系统是通过氢压与弹簧压力之和同油压进行比较,当有压差时,阀杆产生上下运动,从而影响阀口的开度,使压差阀出口流量及压力发生相应变化,并最终实现压力平衡。之时氢压与油压的压差ΔP相对恒定,通过调节弹簧可实现对压差值ΔP进行调整。该阀的压差调节范围为0.4~1.4bar。详述:图1性能参数:接口: 2英寸ANSI 150级钢平面法兰连接。压差调节范围: 6~10 psig(0.4 ~1.4bar)最大入口压力: 150 psig(10bar)。最大出口压力: 150 psig(10bar)。温度范围:﹣20~150°F(﹣29~60°C)※ 深圳市贝斯特燃气设备有限公司   联系人:陈小姐※ 办公地址:深圳市龙华新区观澜街道大和路怡力科技园B栋四楼※ 电话:0755-29049559  13537704290※ 传真:0755-28127295    服务QQ:664064711※ 邮箱:664064711@qq.com※ 网址:http://www.ccbestgas.com  ※ 网址:http://www.fishergas.com  ※ 网址:http://www.cigas.com  
深圳市贝斯特科技有限公司 2021-08-23
汽液两相流自调节液位控制器
目前工业上广泛采用的液位调节器有浮球式、气动式和电动液位控制系统。这些液位调节器均因执行机构动作频繁、易磨损、易腐蚀而经常发生卡涩故障,使液位失控,以及泄漏等,严重影响设备和系统的安全、经济运行。因而在生产实际中,这类设备的液位控制一直是亟待解决的难题。
西安交通大学 2021-01-12
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 84 85 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1