高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中国科学技术大学研制出二氧化碳电还原高效催化剂
近日,中国科学技术大学高敏锐教授课题组和俞书宏院士团队,设计了系列具有“富集”效应的纳米催化剂,结合流动电解池的合理设计,成功实现了二氧化碳到目标产物的高选择性转化。相关工作在线发表于近期的《德国应用化学》和《美国化学会志》。二氧化碳转化技术不仅能够降低大气中的二氧化碳浓度,同时还可以得到诸多高附加值的碳基燃料。在现有的各种二氧化碳转化技术中,电催化二氧化碳还原技术具有可在常温常压下进行、能够实现人为闭合碳循环等优点,成为一种具有应用前景的方法。当前,通过更高效催化剂的理性设计与可控合成,实现二氧化碳电还原技术走向工业化应用成为研究重点与难点。研究人员使用简单的微波热合成,通过反应参数调节,成功制备了3种具有不同尖端曲率半径的硫化镉纳米结构。模拟表明这种半导体材料尖端曲率半径减小会引起尖端附近的电场强度增大,从而增强钾离子在电极附近的富集。流动电解池测试表明,这种催化剂性能大大优于其他过渡金属硫属化物电催化剂。除了利用纳米多针尖的“近邻效应”实现对目标离子的富集外,研究团队进一步提出利用纳米空腔的“限域效应”来富集反应中间体,实现二氧化碳到多碳燃料的高效率转化。以上研究表明二氧化碳电还原反应中催化剂纳米结构设计对催化性能的重要影响,纳米尺度“富集效应”可有效增强关键中间体的吸附,从而推动反应高效率运行。这种新的设计理念为今后相关电催化剂的设计和高附加值碳基燃料的合成提供了新思路。相关论文信息:https://doi.org/10.1002/ange.201912348https://doi.org/10.1021/jacs.0c01699
中国科学技术大学 2021-04-11
用于研究熔融电解质中电活性氧化物电化学行为的电解池
小试阶段/n本成果采用ZrO2固体电解质管构建电解池可以克服现有技术存在的缺陷。首先,ZrO2管作为一种优良的耐火材料,具有较强的抗侵蚀能力,不仅能直接作为盛放熔融电解质的容器;更重要的是:ZrO2管一方面可作为将辅助电极和参比电极与电解池容器集成在一起的基体材料,另一方面又作为将辅助电极与熔融电解质中的固态工作电极分开的隔离膜,不仅能有效避免辅助电极与固态工作电极之间可能产生的电子直接短路,而且能防止辅助电极上的反应参与物对固态工作电极的不利影响。可见,ZrO2管的采用,不仅使电解池的结构简单,且
武汉科技大学 2021-01-12
安徽大学在理论上发现了与铁电序不同步的体光伏效应
近期,我院肖瑞春副教授与中国科学院合肥物质科学研究院张昌锦研究员课题组及其合作者在二维滑移铁电材料中发现了与铁电序不完全同步的体光伏效应,这一结果丰富了人们对铁电序和体光伏效应之间关系的理解,相关研究成果近期发表在《npjComputationalMaterials》上。
安徽大学 2022-07-08
一种大流量插装式三位四通电液伺服阀及其控制方法
本发明公开了一种大流量插装式三位四通电液伺服阀,包括控 制单元和四个插装式二通伺服阀;控制单元的四个信号输出口分别与 四个插装式二通伺服阀的控制信号输入口连接;控制单元的四个信号 输入口分别与四个插装式二通伺服阀的阀芯位移信号输出口连接;四 个插装式二通伺服阀两两串联,一个阀的出油口与另一个阀的进油口 相连接,形成两组串联双阀;两组串联双阀的出油口均用于与油箱相 连接,两组串联双阀的进油口均用于与液压油源相连接;相当于两组 串联双阀并联,构成桥式回路,形成具有三位四通功能的大流量插装 式电液伺服阀;
华中科技大学 2021-04-14
我国科学家研发出新型口服胰岛素纳米递送系统
糖尿病因其高患病率、高致残率和高死亡率,已经成为世界性严重公共卫生问题。口服给药因其无痛、方便而被广泛应用,然而由于胃肠道内酶的降解作用以及肠道黏膜的低通透性,蛋白类药物口服生物利用度极低。
科技部生物中心 2022-03-18
有机官能化系列笼型倍半硅氧烷纳米材料制备技术
该技术通过分子设计和环境友好的水解反应,利用顶角-戴帽法和官能团剪裁等手段制备带有多种可反应性基团的中空笼型纳米材料。材料具有质轻、透气、超低介电常数、耐热、易加工、可溶解性、生物相容性等特性,体现了不同于传统纳米材料的优点,与聚合物有非常好的相容性和分散性。这类有机-无机杂化材料实现了将有机材料的耐热性能和高强度与有机高分子材料的加工工艺简单完美结合的目的。 笼型倍半硅氧烷与高分子聚合物的相容性良好,基本可以达到分子级均匀分散,这是普通无机填料无法达到的,得益于笼型倍半硅氧烷分子具有有机部分,既使在惰性基团取代笼型倍半硅氧烷中也可以与有机基体实现良好的相容行为。同时,材料的耐热性能指标(如玻璃化转变温度,5%质量损失热降解温度)均有大幅度提高,这是因为笼型倍半硅氧烷的Si-O骨架部分提供了优异的抵抗热冲击性能,此外,还可以利用多官能化笼型倍半硅氧烷进行交联反应实现三维交联结构,以进一步提高耐温性能。另外,笼型倍半硅氧烷可以作为各种催化剂和其他功能性材料的载体,在拓宽这些功能材料使用温度的同时提高其某些性能,如提高电致发光材料的发光效率和发光纯度,提高催化剂的催化效率和选择性。 可以预见,随着各个交叉学科领域的不断扩展,笼型倍半硅氧烷作为典型的有机-无机杂化材料的优异性能将会引起人们越来越浓厚的研究兴趣。 粒子尺寸:1.5~3nm;溶解性:根据官能团不同,可溶解于有机溶剂或水;颜色:白色;耐热性:热分解温度在250℃以上。可用于耐高温材料、航空航天材料、复合材料、超低介电材料、塑料及纤维改性、功能高分子材料、特种涂料、生物材料等制备。在高附加值材料领域,应用前景广阔。项目投资300~400万。
北京化工大学 2021-02-01
细胞色素C分子自组装纳米有序复合结构组装体及制备方法
本发明涉及细胞色素C分子自组装纳米有序复合结构组装体及制法,以羟基磷灰石纳米粒子为基本单元,在三维空间组装成纳米γ-氧化铝模板/羟基磷灰石纳米有序复合结构组装体(组装体1),然后与细胞色素C组装,得到细胞色素C/γ-氧化铝模板/羟基磷灰石纳米有序复合结构组装体,其细胞色素C平均表面含量为4.5×10
东北电力大学 2021-04-30
二维钙钛矿纳米材料用于光催化降解黑臭水体
产品服务:焦化厂外排废水含高浓度有毒、难降解的氰化物、COD及氨氮称为焦化废水,是一种较难处理的有机废水,传统处理方法后无法达标。随着国家对环保问题的的日益重视以及国民环保意识的不断提高,废水的排放标准也变得更为严格。各国学者经过不断的探索研究出了一些新的焦化废水处理技术,如:电化学氧化技术、光催化氧化技术、膜技术等。这些技术对焦化废水中的污染物处理的较为彻底且不会产生二次污染,但是这些技术投资成本和运行成本较高并且很多仍处于理论研究和实验室研究阶段,较难实现大规模工业化应用。项目优势:本研究以铁基的纳米材料制备电极具有单个优点:高效降解焦化废水,高的使用寿命;低的处理成本。 市场概况:发展规划: 本团队计划创立集特色催化剂和配套设备为一体的纳米电催化工艺,以去除焦化废水中的难降解污染物为主要目标,同时实现脱色、除臭和净化水体的目标。经营目标是以上海环保公司为依托,对于他们在工程应用中的水处理需求,公司为其提供相应的环保咨询和先进的水处理产品,互利共赢。与此同时也要逐步提高产品品牌的市场认可度以及品牌效应。  商业模式:盈利模式: 前期以Fe基纳米电极与配套电催化设备的批量生产和销售为主,在产品推广到一定阶段后,以实际废水处理工程项目承包运营为主。 
同济大学 2021-04-10
一种蓝莓花色苷壳聚糖纳米乳液的制备方法及应用
项目成果/简介:本发明提供了一种蓝莓花色苷壳聚糖纳米乳液的制备方法及应用,属于纳米技术领域,所述制备方法包括:蓝莓果渣超声提取得到蓝莓花色苷提取液;冷冻干燥;将蓝莓花色苷粗提物加入浓度为0.5~0.8mg/mL壳聚糖盐酸盐溶液中,得到混合液Ⅰ;将pH为6.0±0.1,浓度为0.5~2.0mg/mL羧甲基壳聚糖溶液逐滴加入到混合液Ⅰ中,得到蓝莓花色苷壳聚糖纳米乳液。本发明制备的蓝莓花色苷壳聚糖纳米乳液可以用于制备滴眼液和蓝莓花色苷饮料中。本发明制备方法简单,制备的蓝莓花色苷壳聚糖纳米乳液的平均粒径小于500nm,同时,本发明制备的蓝莓花色苷壳聚糖纳米乳液中的花色苷随贮存时间的延长,损失率极小,制备的滴眼液和饮料具有花色苷含量高,性质稳定等特点。
安徽农业大学 2021-04-10
一种Mg掺杂的ZnO超细纳米线及其合成方法
本发明公开的Mg掺杂的ZnO超细纳米线具有六方纤锌矿结构,纳米线的直径为1~10纳米,长度为5~1000纳米。其合成步骤如下:将脂肪酸锌、脂肪酸镁和高沸点有机溶剂混合置于反应烧瓶中,磁力搅拌下加热至100~150℃,抽真空除去反应体系中的水蒸汽和氧气,在惰性保护气氛下加热到200~350℃,再将温度为100~200℃的十八醇快速注入到反应烧瓶中,保温1~100分钟,离心分离,得Mg掺杂的ZnO超细纳米线。本发明制备工艺简单、成本较低、重复性好、易于工业化生产,Mg掺杂的ZnO超细纳米线具有很强的量子限域效应,有望在蓝紫光发光二极管、紫外激光器等诸多领域得到应用。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 121 122 123
  • ...
  • 157 158 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1