高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
海嘉船舶综合显示系统
海嘉船舶综合显示系统基于多源信息融合和可视化展示,通过多通道信号处理和大屏幕技术实现。系统收集船舶各种设备如传感器、监控系统的数据源,利用图像合成和分屏技术将信息集成展示在大屏幕上。多通道信号处理确保来自不同源头的数据能够被有效整合和展示,包括船舶状态、位置、设备健康状况等信息。系统通过实时数据处理和高效图像呈现,使船员或操作人员能够直观、全面地监控船舶状态,为船舶运营、安全管理提供可视化支持。
厦门大学 2025-02-07
电供暖智能控制系统
技术成熟度:技术突破 本成套设备,以电供暖的各个电暖气为控制对象,以建筑内不同房间不同区域的取暖温度为控制参数,自下而上,组成了由单片机现场控制器(控制室单独使用PLC控制器)、PLC中间层算法控制器、工控机为上位机构成监控界面的DCS控制系统,从而实现分散控制集中管理的控制系统。此系统的目的在于替换传统水暖系统,利用合理科学的软件算法,实现节能、环保、减排的效果。设备兼具教学、实验、科研及实用的功能。 成果技术特点:本套装置由四个单片机组成现场控制器,一个PLC组成的控制室控制器,与中间层面的S7-300PLC控制系统,以及顶层监控层的工控机装置,统一安装到了一个整体的平台上。此平台便于实地集中实验、研究,也有利于集中编程与项目演示。 图1 设备实物图 图2 为智能控制系统电脑操作界面
吉林建筑科技学院 2025-05-19
融创督导巡课系统
北京大智汇领教育科技有限公司 2025-01-09
AI心理情绪识别系统
AI心理情绪识别系统1.多模态信号采集:人脸动态图像、脑电信号采集、语音情感检测。2.功能模块包含:情绪检测、情绪档案、数据统计、用户管理、系统设置功能模块。3.系统基于情绪心理学相关理论,结合面部表情的二维情感空间分析技术、脑电信号的状态分析、语音的三维情感空间分析三种模态相互融合叠加技术,检测人心理情绪状态,提高其检测准确度。3.    基于摄像头面部情绪识别技术,可以实时分析人体面部所包含的情绪状态。通过非接触式的实时视采用 AI 人工智能学习技术,结合心理学,通过对被测试人员 60秒的测试,能够获取相关心理/心理指标。帮助被测试人员了解自己的心理健康状况,并且引起人们重视心理健康,从而在工作、学习、生活当中提高身心健康。并且通过定期测试,能够获取个体、准确的进行心理危机预警,显示被测人员心理危机测试报告,提醒心理医生重点关注。用户在进行注册登录后,根据语音提示可直接进入测试界面进行情绪识别。点击测试按钮,调整好站立位置,脸部朝向屏幕,人脸录入即可完成测试,测试完成即可生成测试报告并能打印报告。4    基于脑电生物传感器状态检测、实时展示人体脑波原始状态指标以及Delta、Theta、Alpha、Beta、Gamma等8个EEG参数。5.    采用任务态模式进行语音情感分析,测试者按照系统设定的特定语境信息进行朗读来进行情感分析。6.    检测结束后可实时出具“心理生理状态分析结果报告”,其中包括被测试人员信息、检测时间、12维度心理生理情绪数据,包含正面情绪(平衡、自信心、活力、调节水平),负面情绪(攻击性、压力、紧张、可疑),生理参数(抑制、神经质、消沉、幸福指数),以及综合状态指标:专注度、放松度、疲劳指数、焦虑指数、压力指数、抑郁指数等。7.    统计分析:系统自带数据中心的统计功能,可以按单位进行所有检测人员的压力分布图及重点关注人员的信息显示。8.    检测完成后系统自动生成检测报告,检测报告需包含每项参数的检测数据大小、参考范围、异常数据等,以及用情绪参数雷达图、饼状图、直方图、曲线视图等多种表示方法。9.    信息查询功能:管理员可通过多条件查询功能,只需通过任意一项查询条件即可快速查询出与之对应和匹配的测试者信息,以及该测试者的历史测试记录,并可对该测试者的测试记录进行纵向和横向对比,综合分析该名测试者的心理健康状况。9.用户管理端:以管理员身份登录该系统可对用户进行管理。可进行添加用户、删除用户、查询用户、用户信息修改、密码修改、级别权限设置、单位框架搭建、查看用户报告,以及导出、打印用户报告。10.系统具有特定场合模态设置功能,可关闭和开启语音检测功能。11.视频检测时面部框具有信号质量检测功能,通过不能的颜色在面部框进行彩色状态提示,同时具有人脸检测判别功能,比如面部不全、距离较远等识别功能
北京京师慧智科技有限公司 2025-05-22
一种用于高电压(5V)锂离子电池的电解液
锂离子动力电池在实际工作中需要很高的能量和功率密度,所以需要有些正极材料在高电压(4V 以上)还能进行锂离子的嵌入/脱出反应,而在这样高的电压下,现有的有机电解液体系不能满足要求。另外,锂离子动力电池的电解液还需要能满足大电流充放电和高温工作的要求。目前的电解液体系是把 LiPF6为电解质盐溶解于以环状碳酸酯[如碳酸乙烯酯(EC)或碳酸丙烯酯(PC)]和直链碳酸酯[如碳酸二甲 酯(DMC)或碳酸二乙酯(DEC)]混合溶剂中,不能满足锂离子动力电池的上述要求。我们近年来在对正极材料进行表面改性的基础上,进行了高电压新电解液体系的研究,可行的解决途径包括优化有机电解液体系、添加适当添加剂、选择新型锂盐以及使用离子液体等。 该电解液可以提高电解液与高电压正极的相容性,减少充电过程中电解液在高电压正极材料表面的分解,并可以在正负极表面形成稳定的 SEI 膜,使得正极材料的充放电容量及循环稳定性显著提高;而且工艺简单、易于实施、原料成本低廉、适于工业化生产,应用前景广阔。
南开大学 2021-02-01
一种用于高电压(5V)锂离子电池的电解液
项目成果/简介:锂离子动力电池在实际工作中需要很高的能量和功率密度,所以需要有些正极材料在高电压(4V 以上)还能进行锂离子的嵌入/脱出反应,而在这样高的电压下,现有的有机电解液体系不能满足要求。另外,锂离子动力电池的电解液还需要能满足大电流充放电和高温工作的要求。目前的电解液体系是把 LiPF6为电解质盐溶解于以环状碳酸酯[如碳酸乙烯酯(EC)或碳酸丙烯酯(PC)]和直链碳酸酯[如碳酸二甲 酯(DMC)或碳酸二乙酯(DEC)]混合溶剂中,不能满足锂离子动力电池的上述要求。我们近年来在对正极材料进行表面改性的基础上,进行了高电压新电解液体系的研究,可行的解决途径包括优化有机电解液体系、添加适当添加剂、选择新型锂盐以及使用离子液体等。 该电解液可以提高电解液与高电压正极的相容性,减少充电过程中电解液在高电压正极材料表面的分解,并可以在正负极表面形成稳定的 SEI 膜,使得正极材料的充放电容量及循环稳定性显著提高;而且工艺简单、易于实施、原料成本低廉、适于工业化生产,应用前景广阔。
南开大学 2021-04-11
高纯度金属有机物(MO-CVD源)的新型通用电解合成技术
采用“电子”作为反应试剂,以金属[M = In, Sn, Al, Ta, Nb, Zn, Ti, Ni,等]为阳极,控制一定的阳极电极电位,分别在ß-二酮(如乙酰丙酮,Hacac),醇(ROH),或其混合溶液中电化学溶解金属,或按照一定顺序电化学溶解两种金属得到相应的单金属或者多金属有机物。具体反应为:M(金属)+ HL +电能 → ML (L=OR,ß-二酮如:Hacac)。本工艺为高纯度金属有机物(MO-CVD源)开发出一种全新“绿色化学”途径,具有如下优势:(1) 原材料金属可通过电解精炼达到很高纯度(>99.99%),从源头保证MO-CVD源的纯度要求,该技术采用阳极电极电位控制特定金属溶解,从而进一步控制杂质离子。同时该技术合成的MO-CVD源可以采用常规方法进一步提纯,根据需要杂质离子可以控制在10-9 量级以下。如采用该法制备的纳米TiO2(粒径分布窄,~5 nm左右)杂质分析:Pb:0.6 ppm,As:0.5 ppm,Hg:0.09 ppm,Fe:0.21 ppm。(2) 该工艺克服了传统化学方法合成MO-CVD源的缺点。以钛醇盐为例,化学法采用TiCl4 +ROH → Ti(OR)4,该反应由ROH逐渐取代Cl生成Ti(OR)xCly,采用氨吸收HCl形成沉淀使反应向右进行,无法得到不含Cl的Ti(OR)4,很难满足特殊电子工业对Cl杂质要求很高的工艺要求。本技术从工艺路径上保证了产品纯度:Ti(金属) + ROH +电能 → Ti(OR)4,该过程未引入任何Cl杂质,可以做到绝对无Cl的MO-CVD源。 (3)该技术具有通用性。MO-CVD源属于高附加值产品,市场变化快,本工艺采用的设备可以随时通过更换不同金属或者有机配体(含有活性氢配体),根据市场需要随时实现产品的转换,在追求高利润的同时规避市场风险,具有投资价值。工艺路线:具体合成:1. 金属醇盐:如钛醇盐、钽醇盐、铌醇盐、铟醇盐、锡醇盐,铜醇盐、镍醇盐等,及其稳定的金属醇盐ß-二酮配合物。2. ß-二酮金属盐化合物:如乙酰丙酮金属盐,乙酰丙酮锌Zn(acac)2、乙酰丙酮铁、乙酰丙酮铟In(acac)3、乙酰丙酮铜、乙酰丙酮钽、乙酰丙酮铌、乙酰丙酮锡等。3. 二元金属醇盐ß-二酮配合物:如PbTi(OR)x(acac)y,AlTi(OR)xLy,NaTa(OR)xLy,LiTa(OR)xLy等。 应用范围:高纯金属有机物可以作为MO-CVD源,制备超高纯度纳米金属氧化物。同时这些金属有机物可以有以下用途:添加剂,热稳定剂,催化剂,具体可用作树脂交联剂,树脂硬化促进剂,树脂、塑料、橡胶添加剂,铁电、压电等氧化物薄膜、超导薄膜、热反射玻璃薄膜、透明导电薄膜等功能薄膜材料等。
南京工业大学 2021-04-13
一种用于高电压(5V)锂离子电池的电解液
锂离子动力电池在实际工作中需要很高的能量和功率密度,所以需要有些正极材料在高电压(4V以上)还能进行锂离子的嵌入/脱出反应,而在这样高的电压下,现有的有机电解液体系不能满足要求。另外,锂离子动力电池的电解液还需要能满足大电流充放电和高温工作的要求。目前的电解液体系是把LiPF6为电解质盐溶解于以环状碳酸酯[如碳酸乙烯酯(EC)或碳酸丙烯酯(PC)]和直链碳酸酯[如碳酸二甲酯(DMC)或碳酸二乙酯(DEC)]混合溶剂中,不能满足锂离子动力电池的上述要求。我们近年来在对正极材料进行表面改性的基础上,进
南开大学 2021-04-14
一种利用电解磁选法完整提取钢中夹杂物的方法
(专利号:ZL 201310647043.4) 简介:本发明公开了一种利用电解磁选法完整提取钢中夹杂物的方法,属于金属物理研究方法技术领域。本发明的步骤为:(1)制备钢样;(2)电解过程,将钢样作为阳极,并将钢样放入电解槽内进行电解;(3)淘洗过程,控制进气管的气流速度和进水管的水流速度;(4)磁选分离,将磁选分离皿固定于振动器上,磁选分离皿的上方安装电磁铁,控制振动器的振动频率为1~5Hz,水平振幅为2~4cm,在磁选分离皿随振动器振动
安徽工业大学 2021-01-12
一种用于测定熔渣中铁氧化物分解电压的电解池
本发明涉及一种用于测定熔渣中铁氧化物分解电压的电解池。其技术方案是:ZrO2管(12)封闭端的下部外表面烧结有气体参比阳极(14),ZrO2管(12)封闭端内装有熔渣(1),ZrO2管(12)上端口的氧化铝塞(2)设有排气孔(9);进气通管(10)的上端口通过橡胶管(3)与T型三通管(7)的下端口密封连接,T型三通管(7)的旁端口为进气口(8);绝缘管(11)的下端穿过橡胶塞(6)的中心孔和进气通管(10)的下端口至ZrO2管(12)内,绝缘管(11)的下端固定有固态阴极(13),固态阴极(13)的下端插入熔渣(1)中;阴极引线(5)的下端穿过绝缘管(11)与固态阴极(13)的上端连接。本发明具有结构简单、操作容易、测定结果稳定和抗干扰能力强的特点。 (注:本项目发布于2013年)
武汉科技大学 2021-01-12
首页 上一页 1 2
  • ...
  • 29 30 31
  • ...
  • 565 566 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1