高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高智能数字化妇产科技能训练系统(计算机控
XM-F56 高智能数字化妇产科技能训练系统(计算机控制)   ★ 标志表示需要与选配件配套使用才能实现的功能 在XM-F55高级分娩与母子急救模型的基础上升级,系统根据住院医师规范化培训大纲,结合妇产科临床技能操作要求而研发。包含了妇科、产科、儿科、急救以及护理等多个学科,分为产妇、新生儿两大系统。包括整个分娩过程、基础护理、产后母婴护理以及母婴的基础生命支持(BLS)、高级生命支持(ACLS)到持续生命支持(PLS)的急救知识点。提供难产案例,如正常分娩、脐带绕颈分娩、臀位难产、先兆子痫、剖腹产、脐带脱垂、早产、潜在的产前、产中和产后出血等,指导产科工作者通过产程图辨识分娩的不同产程阶段,临床诊断异常产程,并合理处理;通过胎儿的临床监护及时诊断胎儿宫内窘迫,并实施处理;训练新生儿的护理及急救,软件可以自行编辑临床病例,模拟临床真实环境,培养学生处理分娩与急救病例时的临床诊断思维与团队合作精神。   软件系统: ■ 友好的操作界面:软件操作简单易学,可以模拟多种患病场景,训练学生的综合急救能力和临床诊断思维。 ■ 开放式系统构架:用户可以自行编写病例,以满足不同培训和考核的需要。 ■ 容易编写:提供多种趋势,流程图表,事件记录使编写,运行变的更加容易。 ■ 全面兼容windows系统:可同时进行其他办公软件的操作,与其他软件不冲突。   孕妇分娩模拟人主要功能: ■ 急救技术: · 标准的气道管理功能,可进行经口气管插管,插管位置在电脑上实时显示。 · 静脉穿刺:手臂静脉输液,三角肌部位皮下注射,大腿外侧,三角肌肌肉注射。 · 模拟药物治疗系统,可选择多种给药方式,可自定义添加,修改药物,能保存药物列表,药物存在各种药效生理反应。 · CPR:吹气时胸部有起伏,计算机监测按压位置及深度,计算机监测吹气量大小,实时数据图形显示,操作结束后有统计报告,能进行单人或多人训练考核,全程中文语音提示。 · ★模拟除颤起搏:多媒体动画展示医用除颤仪的操作流程,与XM-J980模拟除颤起搏器配套使用,可实现除颤起搏。能选择除颤能量,最大除颤能量达到360J。   ■ 生命体征模拟: · 实时监测宫缩曲线及FHR曲线变化。 · 模拟产妇的的各种主诉,呻呤、咳嗽、呕吐等声音,真实再现产房的实际情景。 · B超检查:提供几十种临床B超影像,通过B超检查,观察胎儿生理活动情况,判断胎盘是否正常。 · 颈动脉搏动。 · 胎心音听诊。 · 配有仿真宫颈。 · ★模拟心电监护:使用指夹式血氧探头,监测血氧,可与XM-J116多参数模拟心电监护仪配套使用,实现模拟心电监护。多参数模拟监护仪LCD屏幕提供12导联心电图、血氧饱和度、呼吸、二氧化碳、血压(动脉血压、中心静脉压、肺动脉压、无创血压)、心输出量等。   ■ 模拟从待产到生产,以及产后护理的整个过程: · 分娩:可自行进行枕左前位分娩机制的演示,并伴有自动的宫缩、衔接、下降、俯屈、内旋转、仰伸、复位及外旋转、胎肩及胎儿的娩出,分娩速度可根据教学要求而调节。模拟宫缩,由气泵模拟不同强度,持续时间的宫缩。模拟分娩机转,在第一产程期间,缩复现象。下降是间段进行的,宫缩时胎儿头下降,间隔时略回缩,到宫口完全张开后(第二产程开始)。 · 软件控制胎头下降的位置,配合产前宫颈变化与产道关系变化模块,测量胎头的下降和宫口开大情况。 · 模拟正常分娩、臀位分娩、肩难产。 · 可在模拟人上练习四种常用手法解决肩难产:McRobert’s手法、耻骨上加压法、旋肩法、膝肘卧位法,或联系使用几种手法。 · 配有“利奥波德手法练习用提升软垫”,可进行利奥波德手法练习。 · 配有产前宫颈变化与产道关系变化模块可装配到母体上进行训练。    阶段一:宫颈口没有扩张、宫颈管没有消失、胎头与坐骨棘平面位置关系为-5。    阶段二:宫颈口扩张2cm、宫颈管消失50%、胎头与坐骨棘平面位置关系为-4。    阶段三:宫颈口扩张4cm、宫颈管完全消失、胎头与坐骨棘平面位置关系为-3。    阶段四:宫颈口扩张5cm、宫颈管完全消失、胎头与坐骨棘平面位置关系为0。    阶段五:宫颈口扩张7cm、宫颈管完全消失、胎头与坐骨棘平面位置关系为+2。    阶段六:宫颈口扩张10cm、宫颈管完全消失、胎头与坐骨棘平面位置关系为+5。 · 模拟多种胎盘位置,胎盘碎片残留。 · 可进行剖腹产。 · 外阴缝合练习模块,分左下、正中、右下三个切口位置。 · 产后48小时子宫按摩,产后大出血。 · 产妇护理(包扎、梳头,全身擦洗等)。   新生儿功能: ■ 静脉穿刺功能:可进行新生儿头皮静脉穿刺、手臂静脉穿刺,静脉穿刺时有落空感,穿刺成功时有回血产生。 ■ 护理功能:眼清洗滴药、可进行新生儿清洗、包扎。 ■ 可进行新生儿心肺复苏训练。 ■ 可经口鼻气管插管,进行婴儿吸痰、洗胃。 ■ 可进行婴儿脐带护理。 ■ 支持口对口、口对鼻、简易呼吸器对口等多种通气方式。 ■ 可进行人工呼吸。 ■ 可进行心外按压。   系统组成: ■ 孕妇模拟人(分娩与成人急救用) ■ 新生儿模拟人(急救与护理用) ■ 胎儿模拟人(分娩用) ■ 模拟宫颈口 ■ 产前宫颈变化与产道关系模块(6个阶段) ■ 产后48小时子宫 ■ 用于产后会阴切开缝合的模块 ■ 模拟胎盘/脐带 ■ 利奥波德练习提升“软垫” ■ 其他功能辅助用具 ■ 应用软件   可选配件(用户自配): ■ 真实心脏除颤起搏器 ■ XM-AED98F自动体外模拟除颤仪 ■ XM-J115多参数模拟心电监护仪 ■ 视频监控设备 ■ 计算机 ■ PC工作站 ■ 不锈钢控制台车 ■ 抢救操作台
上海欣曼科教设备有限公司 2021-08-23
中银/BOCT 98英寸触控多媒体教学一体机
产品详细介绍 中银/BOCT 98英寸触控多媒体教学一体机
深圳市中银科技有限公司 2021-08-23
一种秸秆还田纤维分解性生防真菌及菌剂和应用
本发明提出一种秸秆还田纤维分解性生防真菌及菌剂和应用,其中该菌株F7JX993849的分类命名为绿木霉Trichoderma?virens,保藏于中国微生物菌种保藏管理委员会普通微生物中心,其保藏编号为CGMCC?No.3.17613。本发明的绿木霉Trichoderma?virens?F7JX993849对农作物秸秆中的纤维素、半纤维素和果胶组分同时具有较强的分解能力。其次,本发明的绿木霉Trichoderma?virens?F7JX993849可以拮抗植物病源菌入侵,具有生物防治功能。再次,本发明的秸秆还田纤维分解性生防真菌所制成的菌剂,可以解决一般秸秆腐熟剂在应用过程中效果不理想、不稳定的问题,具有良好的应用价值。
青岛农业大学 2021-04-11
防误码扩散的 JPEG-LS 图像无损/近无损压缩算法硬件实现方法
本发明公开了一种防误码扩散的图像无损/近无损压缩方法:采用并行预测方式,将分块的图像通过两路并行得到预测结果,在每个预测环节,像素之间间隔一个像素时钟周期,使得由参数索引、预测修正、残差计算、参数更新反馈环路可使用流水线设计;在近无损压缩模式下,每个像素有足够的时间进行像素重建,在当前像素进行上下文建模前能刚好得到上一个像素对应的像素重建值;通过引入分块压缩与检纠错编码相结合的方法,防止了误码的大面积扩散,提高了
华中科技大学 2021-04-14
一种用于圆形断面结构衬砌混凝土温控防裂设计计算方法
本发明公开了一种用于圆形断面结构衬砌混凝土温控防裂设计计算方法,包括如下步骤:确定温控 防裂目标;计算允许最高温度;拟定温控方案,计算混凝土内部最高温度,在计算最高温度≤允许最高 温度的前提下,设计温控防裂方案。本发明方法的计算公式简单,能合理反映围岩性能、衬砌厚度、混 凝土强度、洞内空气温度、通水冷却及其水温、浇筑温度等的影响,可以迅速计算出圆形断面结构衬砌 混凝土施工期各月浇筑施工的允许最高温
武汉大学 2021-04-14
基于机器视觉的路面病害检测关键技术
路面病害分为表面破损(如裂缝)、路面变形(如沉降)和结构病害(如层间脱空)三大类。该技术以路面检测成果为全卷积神经网络的输入信号,对于表面破损,其输入为多功能检测车拍摄的路表图像;对于路面变形,输入为三维检测车测取的三维路面模型;对于结构病害,输入为探地雷达信号图像。通过海量数据的训练、测试,可实现上述三类病害的自动化识别、分类和测量,为路面养护工程提供数据支撑。此外,该技术在保证与人工识别结果相同的精度下,可将数据处理速度提高千倍以上。 
华东交通大学 2021-05-04
关于蛋白质机器动力学的研究
泛素-蛋白酶体体系(Ubiquitin-Proteasome System,简称UPS)是细胞内最重要的蛋白质降解通路,对维持生物体内蛋白质的浓度平衡,以及对调控蛋白、错误折叠或受到损伤的蛋白的快速降解起着至关重要的作用,参与了细胞周期、基因表达调控等多种细胞进程,由UPS失常引发的蛋白质新陈代谢异常与众多人类重大疾病直接相关。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该降解通路的发现。UPS中蛋白酶体是细胞中最基本的、最重要的不可或缺的、最为复杂的大型全酶超分子复合机器之一,人源蛋白酶体全酶包含至少33种不同的亚基,总原子质量约为2.5MDa。美国FDA批准的多种治疗癌症的药物分子即以蛋白酶体为直接靶标。近年来,随着冷冻电镜技术的发展和应用,人们对这一大分子机器的结构和功能研究得以不断深入。2016年,毛有东课题组与合作者报道了人源蛋白酶体基态的3.6Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒(Core Particle,简称CP)底物转运通道处于开放状态(见PNAS 2016, 113: 12991-12996)。2018年4月,该课题组又报道了6个ATPγS结合状态下的26S动态结构,包括三个CP开放态对应的亚稳简并态近原子分辨(4~5Å)结构(见Nature Communications 2018, 9: 1360)。尽管这些工作揭示了蛋白酶体的基本架构和内在运动行为,但由于缺乏蛋白酶体与底物之间的相互作用,人们对于蛋白酶体如何实现底物降解的原子水平工作机制仍一无所知。此外,尽管冷冻电镜技术近年来广泛应用于分析具有动态特征的蛋白复合体结构和平衡态构象,但对其中间态结构和非平衡构象分析的分辨率水平往往局限在4~6埃或更低,离真正的全原子水平动力学分析还有相当一段距离。 为了真正实现原子水平的蛋白酶体底物降解动态过程的冷冻电镜三维重建和动力学表征,毛有东课题组攻克了两大技术难题。其一,如何在蛋白酶体完成底物降解之前抓到它的所有可能的中间态构象?课题组发展了一种新颖的核酸置换法,利用ATPγS降低AAA-ATPase激酶水解活性的特点,在底物降解中间过程,通过将ATP快速置换成ATPγS,结合快速冷冻的优势,从而扑捉到蛋白酶体在底物降解过程的中间态。其二,如何在从冷冻电镜数据中分析出更多构象的同时,还把分辨率做到3埃甚至更好?课题组通过多年持续努力,发展了多种基于人工智能和机器学习的冷冻电镜图像聚类的新型算法,并针对蛋白酶体的动力学特征,设计了一套极其有效的整合了多种算法的多构象分类流程。通过这两套技术方案的完美结合,课题组成功解析了人源蛋白酶体在降解底物过程中的七种不同的、但差别甚微的、高分辨原子水平的天然态构象(Native states),完整展示了蛋白酶体从泛素结合到去泛素化,再到底物转运的动态过程。与同期在Science上发表的与底物结合的酵母蛋白酶体的4.2-4.7埃冷冻电镜结构(Science doi: 10.1126/science.aav0725,来自加州伯克利分校和Scripps研究所)相比,该Nature论文不仅总构象数量多一倍,全部构象分辨率还高1-2埃。由于Science论文采用了抑制Rpn11去泛素活性的策略,其非天然态结构中底物并不能真正自由转运,所推测的机理仅限于底物转运这一步,对于其他三大Nature论文所回答重要问题均无法给出答案。这体现了该Nature论文不仅在实验方法的原创性上和数据分析水平和质量上,更在科学发现和问题探究的深度和广度上大幅超越了来自Science的竞争性论文。图一 七个利用冷冻电镜解析的精细原子结构完整揭示了从泛素识别、去泛素化反应、转运启动和持续降解的核心功能动态过程。 作为整个蛋白酶体的动力来源与运转核心,AAA-ATPase激酶分子马达展现出了三种不同的核苷酸水解协作模式,6个ATPase亚基协调工作,交替与底物发生相互作用。在去泛素化过程(EB态)中,处于对立位置的两个ATPase亚基Rpt2与Rpt4水解ATP,而Rpt5与Rpt6则释放ADP,ATPase内的底物转运通道被打开,使得底物可以进入轴心通道;与此同时,去泛素化酶Rpn11亚基与泛素及底物发生相互作用,执行其作为去泛素化酶的功能;在转运起始过程(EC态)中,相邻的两个ATPase亚基Rpt1与Rpt5会同时水解ATP,调控颗粒(Regulatory Particle,简称RP)发生大规模转动并释放泛素;在底物去折叠与转运过程(ED态)中,三个相邻的ATPase亚基会分别同步进行ATP的结合、ADP的释放与ATP的水解,这一过程会单向传递下去,将ATP水解释放的化学能转换为机械能,使得相应的ATPase亚基发生刚体转动,推动底物的去折叠和单向输运,同时CP的转运通道入口打开,底物被送入通道中进行降解。这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的ATPase马达分子的一般工作原理具有极为重要的科学意义。
北京大学 2021-04-11
基于AI 机器学习的影像组学模型研究
2019年12月以来,由SARS-CoV-2病毒感染导致的新型冠状病毒疾病(COVID-19)在全球开始蔓延。报道显示,SARS-CoV-2感染患者的中位住院时间为10天,而武汉患者在发病10天后症状有可能加重。因此,住院时间是COVID-19临床预后的重要指标之一。 目前,CT影像学已成为COVID-19肺炎的诊断和监测工具,主要表现为磨玻璃影、实变及混合密度影。然而,现阶段的影像学研究主要集中于对病灶的定性和半定量描述,缺乏对病灶的全定量分析。因此,基于前期提出的CT定量监测COVID-19肺炎病程,团队假设在CT病灶背后的高通量影像特征“隐藏”了患者预后转归的“秘密”。 本研究纳入了兰州、安康、丽水、镇江、临夏5家新冠肺炎定点医院,自2020年1月23日到2月8日期间住院患者的临床资料和首次CT资料,所有患者经RT-PCR证实SARS-CoV-2病毒感染。至2月20日,研究共纳入31例治愈出院的患者(排除14例未出院患者和7例首次CT检查无肺炎表现患者),并将10天作为住院时长的二分类阈值。基于有限的样本量,团队将4个中心作为训练队列,另外一个中心作为验证队列。通过自动分割肺叶和半自动分割病灶,31名患者中累计分割出72个病灶。在对病灶图像预处理后,提取影像组学特征并筛选。为了研究影像组学特征的稳定性,团队使用了Logistics回归模型和随机森林模型对筛选的特征分别进行建模和验证。​结果发现,6个筛选出的二阶特征在两种不同分类器中均表现出良好的预测价值。在外部测试队列中,Logistics回归模型的AUC为0·97(95%CI 0·83-1·0), 敏感性 1·0, 特异性0·89;随机森林模型的AUC为0·92 (95%CI 0·67-1·0),敏感性 0·75, 特异性1·0。随后,研究又纳入了2月20日-28日新出院的6名患者,利用已建立的影像组学模型可以正确预测所有6名患者的住院时间。 
东南大学 2021-04-10
自动化机器学习算法研究与系统实现
研究目的和意义机器学习和人工智能已成为当今最热门的技术之一。2017年,国务院印发了《新一代人工智能发展规划》,正式将人工智能作为国家重要发展战略之一。人工智能已经成为信息技术时代的又一波浪潮。在这波浪潮的推动下,互联网行业、金融行业、传统制造业、政务民生、公安警务等各行各业都在积极向人工智能领域转型升级,利用人工智能先进技术提升智能分析和辅助决策能力,
南京大学 2021-04-14
AI机器学习技术加速功能新材料的研发
1.痛点问题 新材料的设计与研发往往面临挑战:急需的新材料难以快速筛选设计,而设计出的新材料又难以找到高效且低成本的合成配方,拥有合成配方的新材料又会面临规模化的长周期探索。根据国家工业和信息化部对30余家大型骨干企业调查结果显示,130种关键材料中,有32%国内完全空白、54%虽能生产,但性能稳定性较差、只有14%左右可以完全自给,亟需新思路来解决我国新材料研发难题。本项目着眼于新材料研发,希望通过创建目前业内空白的智能化新材料研发范式,引领行业智能材料开发自动化服务与工艺的开发。 在数字化、智能化浪潮中,国家和各行业的产业界都非常看重科研的智能化升级。通过持续的交流与调研,我们发现许多企业和研发团队目前对智能研发存在大量潜在需求,而智能研究服务与工艺的同类竞品极少。因此,清华智研将作为一家高新科技企业,以AI赋能研发(AIEmpoweringResearch&Development)为使命,组建国际顶尖水平团队,向国内引进并自主开发世界前沿的AIforScience技术,打造世界级的AI未来实验室(World-ClassAIFutureLab)。 2.解决方案 本技术为新材料研发数字化智能服务平台,可在材料研发过程中对各个尺度以及不同研发阶段下进行智能化的加速及分析服务。以各种人工智能算法为核心,如主动学习算法,图神经网络,卷积神经网络等,我们根据不同材料体系的尺度包括三大方面:1.针对分子及晶体等微观尺度的功能材料研发,设计智能化的深度学习系统。2.针对二维功能材料及其功能性器件、催化剂、膜材料等宏观尺度,设计智能化的深度学习系统。3.针对功能材料研发的表征仪器等平台尺度,设计智能化的系统解决方案。这些智能化解决方案能极大地加速新材料尤其是碳中和相关材料的研发速度,从而大大地降低研发成本与时间,为企业获得有竞争优势的科研壁垒。 自动化和人工智能助力未来智能实验室的方方面面,从样品制备(称量固体、添加液体、超声处理.等),到合成(分配液体,控制温度,混合,测量pH值,干燥等)、表征(气相色谱,高效液相色谱,分光光度法等),通过自动化/机器人的辅助,可以有效提高可重复性,提高信噪比,加快实验速度。通过人工智能技术,将实验数据转换为可操作的智能指导,快速浏览并利用复杂的数据,提升认知能力。 智能化研发平台 3.合作需求 拟成立公司推动该项成果的产业化进程,希望对接 1)工程化、产品化所需的资源; 2)新能源、新材料领域合作企业。
清华大学 2022-09-23
首页 上一页 1 2
  • ...
  • 125 126 127
  • ...
  • 147 148 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1