高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
运维云
面向区域录播管理应用设计的在线运营服务系统,实现所辖录播设备基于网络的统一接入管理,打造智能化、系统化、便捷化、实时化的远程运维服务。 轻松满足: ·信息化设备大数据展示 ·所辖前端集中在线运维 优势特点 直观可视的数据中心 通过电子地图的形式,按区域、分层级展现前端设备建设、使用情况,直观展示区域设备数据中心应用成果。 全天候的设备运行监控 系统全天候对接入设备进行状态监控,设备异常信息实时获取,及时跟踪排障。 高效的远程集中运维 接入设备远程参数配置、系统版本在线升级管理,足不出户即可实现整个区域的设备运维。
广州市奥威亚电子科技有限公司 2022-12-21
华为产业云
青软创新科技集团股份有限公司 2022-07-07
基于云计算与边缘计算的社会安全事件智慧化立体综合预警与指挥平台
针对上述社会安全事件综合研判的难题,本成果利用系统工程的综合集成研讨方法论,综合公安学、管理科学、计算机科学等相关学科理论、方法与技术,提出了基于多时空线索链的社会安全事件智能综合研判关键技术以及面向社会安全警情事件的警务资源指挥调度方法。 ①基于多时空线索链的社会安全事件智能综合研判关键技术以群体性聚集事件作为典型社会安全事件,构建基于六空间的社会安全事件综合集成研讨厅体系:融合构建“情景数据-元数据-知识-实体模型-形式模型-算子”六空间体系,提出多时空线索链生成技术,抽取知识空间中共性的时空线索链模式;基于知识和数据共同驱动的思想,提出了社会安全事件的研判支持方法,包括基于知识图谱的推理方法、基于相似案例的推理方法、以及基于贝叶斯网络的推理方法等;进而结合专家研判,实现典型社会安全事件智能综合研判。 ②面向社会安全警情事件的警务资源指挥调度方法是在层次任务网络规划(Hierarchical Task Network, HTN)的基础上,实现任务执行时间、空间和资源约束的推理,解决考虑多任务类型、多警种、多出警地点、任务带有时效性、考虑交通和处置时间等实际因素的警务资源调度方案制定问题;进而考虑执行时间等不确定因素的影响,在规划过程中处理不确定性,制定柔性调度方案,使生成的调度方案更好地适应不确定的执行环境。 ③在此上述关键技术基础上,运用系统工程方法,研究了基于云计算与边缘计算的端网云的网络结构、通讯协议及协同计算模型,综合考虑各方面因素对平台体系架构进行了设计,从顶层设计层面解决信息孤岛、资源有限等难题,构建了基于云计算于边缘计算的社会安全事件智慧化立体综合预警与指挥平台。整体技术路线如下图所示: 图 1 社会安全事件智慧化立体综合预警与智慧平台整体技术路线 研制的基于云计算于边缘计算的社会安全事件智慧化立体综合预警与指挥平台,主要由四个系统组成。其中,融合“人、车、物、网、地”的警情大数据支撑平台与公安部门现有的业务系统相对接,关联研发的目标识别与警情事件监测预警结果,实现警情数据的采集、整理和分析。社会安全事件智慧化综合预警与分析系统基于大数据支撑平台提供的公安业务数据、网络舆情信息和研判结果数据等,提供了公安部门需要的事件分析和研判功能。面向社会安全事件的警务资源指挥调度系统基于研判结果,具有领域知识管理、调度方案生成和执行异常识别等功能,为指导指挥员进行调度方案制定提供辅助决策能力。最后,基于研发的系统间及与公安相关业务系统间的互操作模式、资源可伸缩的并发处理技术,由应用集成管理平台提供应用集成和服务集成功能,包括统一的用户管理和认证、工作界面、应用云服务管理等,实现各系统间的有机集成,平台体系架构如下图所示。 图 2 社会安全事件智慧化立体综合预警与指挥平台体系结构 成果相关图片展示: 图 3 社会安全事件智慧化综合预警与分析系统驾驶舱 图 4 时空大数据查询模块 图 5 研判规则管理模块 图 6 预案管理模块
华中科技大学 2023-05-04
新冠肺炎影像学AI智能辅助诊断研究
“现阶段医生需要在大量影像数据中快速诊断出新冠肺炎的病例,此外还需要诊断出病灶分布的位置、大小等来评估严重程度。”薛向阳介绍,针对临床的现实需求,团队将设计目标定位于“肺炎分类鉴别”和“关键病灶检测”两大功能,前者是为区别健康状态、新冠肺炎、其他病毒性肺炎、细菌性肺炎,后者则为找到并分隔出磨玻璃影等病灶区域。针对这些需求,团队设计诊断算法模型,让机器利用模型进行训练,学习不同类型肺炎在CT影像表现上的不同特征,最终具备智能辅助诊断的能力。而这需要突破小样本学习、小目标检测等多个技术难题。“小样本学习”即在较少训练数据样本的条件下进行机器学习。在疫情发生前期,能够获取的新冠肺炎影像数据相对较少,且由于一线影像医生任务繁重,无法获得大量专家标注,因此需要算法在少量样本的条件下“自学成才”。为此,团队采用基于自迁移学习的半监督学习等技巧,使算法具备一定的“小样本学习”能力,在不增加医生标注工作量的情况下较好地提高了算法模型的普适性。由于CT影像切片中的病灶区域有大有小,且往往大中小病灶区域面积悬殊,如何使算法能同时检测大、中、小各个目标是另一大难题。团队利用神经网络的层次性特点与病灶区域的大小进行对应,“网络的底层关注细节,即小病灶区域,而网络中层到高层所关注的病灶区域则越来越大,因此模型通过不同层次的加权和融合,最终便能达到同时检测大小病灶区域的目标。”薛向阳解释道。“不过,即便有诊断‘神器’,影像科医生也是不可替代的。”薛向阳说,人是复杂的机体,病毒在不同人体内感染的反映也不一定相同。”他表示,当遇到机器未曾学习过的微小病变或疑难病例时,仍需要影像医生的经验和智慧。以解决实际问题为目标,该项目在研究过程中始终与临床应用紧密结合。无论是机器学习数据,还是测试评估数据,都来源于临床真实病例。在算法模型定型过程中,为了检验模型的准确率和泛化性,团队也利用现实疑似病例进行了测试。
复旦大学 2021-04-10
基于AI 机器学习的影像组学模型研究
2019年12月以来,由SARS-CoV-2病毒感染导致的新型冠状病毒疾病(COVID-19)在全球开始蔓延。报道显示,SARS-CoV-2感染患者的中位住院时间为10天,而武汉患者在发病10天后症状有可能加重。因此,住院时间是COVID-19临床预后的重要指标之一。 目前,CT影像学已成为COVID-19肺炎的诊断和监测工具,主要表现为磨玻璃影、实变及混合密度影。然而,现阶段的影像学研究主要集中于对病灶的定性和半定量描述,缺乏对病灶的全定量分析。因此,基于前期提出的CT定量监测COVID-19肺炎病程,团队假设在CT病灶背后的高通量影像特征“隐藏”了患者预后转归的“秘密”。 本研究纳入了兰州、安康、丽水、镇江、临夏5家新冠肺炎定点医院,自2020年1月23日到2月8日期间住院患者的临床资料和首次CT资料,所有患者经RT-PCR证实SARS-CoV-2病毒感染。至2月20日,研究共纳入31例治愈出院的患者(排除14例未出院患者和7例首次CT检查无肺炎表现患者),并将10天作为住院时长的二分类阈值。基于有限的样本量,团队将4个中心作为训练队列,另外一个中心作为验证队列。通过自动分割肺叶和半自动分割病灶,31名患者中累计分割出72个病灶。在对病灶图像预处理后,提取影像组学特征并筛选。为了研究影像组学特征的稳定性,团队使用了Logistics回归模型和随机森林模型对筛选的特征分别进行建模和验证。​结果发现,6个筛选出的二阶特征在两种不同分类器中均表现出良好的预测价值。在外部测试队列中,Logistics回归模型的AUC为0·97(95%CI 0·83-1·0), 敏感性 1·0, 特异性0·89;随机森林模型的AUC为0·92 (95%CI 0·67-1·0),敏感性 0·75, 特异性1·0。随后,研究又纳入了2月20日-28日新出院的6名患者,利用已建立的影像组学模型可以正确预测所有6名患者的住院时间。 
东南大学 2021-04-10
多模态医学影像智能协诊系统TPAID
中试阶段/n该项目主要针对开源CT 医学影像数据和多中心合作单位提供的多模医学影像数据,采用人工智能技术和自主研制的深度学习算法对心脏左心室、肿瘤等CT 影像数据进行全自动分割,验证了所研制算法在该项目计算机辅助肿瘤智能诊断应用中的有效性,为项目产业化实施奠定了方法基础。成果的先进性或独特性:针对不同类型的医学影像感知设备,设计针对性强的机器学习智能算法;国内同类研究中首次采用“双盲评估+验证”的科研方法对影像数据进
武汉大学 2021-01-12
治疗心血管疾病中药赤芍总苷片
该产品是从中药赤芍中提取的有效成份,主要用于因各种器质性心脏病(冠心病、心绞痛、心肌炎、心肌病、肺心病)引起的心肌损伤,并能用于慢性充血性心力衰竭的治疗。世界卫生组织调查结果显示:全世界每年约有1500万人死于心脏病,占总病死率54%以上。目前国内治疗心血管病的二类中药较少,该药的特点是结构成份清楚,治疗效果和机理明确,毒副作用小,可以满足市场需求,并具有
西安交通大学 2021-01-12
首创基因编辑拟人化家兔疾病动物模型
利用基因编辑技术开发系列动物模型,制备第一例家兔自发性高脂血症拟人化疾病动物模型,为心血管疾病治疗以及新一代降血脂药物的研发提供了合适的研究工具,具有广泛的临床转化前景。
扬州大学 2021-04-14
XM-603E脑中风模型(大脑疾病模型)
XM-603E脑中风模型(大脑疾病模型)   XM-603E脑中风模型(大脑疾病模型)展现了大脑的皮质、灰质、脑干、动脉等结构,并且设计了脑出血、动脉瘤、大脑动静脉畸形等病理结构。 尺寸:17×14×18cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
XM-603E脑中风模型(大脑疾病模型)
XM-603E脑中风模型(大脑疾病模型)   XM-603E脑中风模型(大脑疾病模型)展现了大脑的皮质、灰质、脑干、动脉等结构,并且设计了脑出血、动脉瘤、大脑动静脉畸形等病理结构。 尺寸:17×14×18cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
首页 上一页 1 2
  • ...
  • 16 17 18
  • ...
  • 131 132 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1