高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种数字能量交换系统的关键技术
1. 痛点问题 由于绝缘栅双极型晶体管(IGBT)具有驱动功率小而且驱动电路简单、开关速度快并且损耗小、饱和压降低、耐压高、电流大等优点,在柔性直流电网中得到了广泛的应用,现有的MMC换流阀装备均是采用IGBT开关器件进行设计。事实上,IGBT于二十世纪八十年代初诞生,在九十年代得到飞速发展。然而传统的焊接式IGBT容量较小、可靠性较低且失效后呈断路特性,因此早期的IGBT主要应用于中低压领域,直至压接式IGBT诞生之后才开始在高压、大功率电力电子换流器当中得到应用。IGBT器件的容量从最早的600V/6A级别逐渐提升,迄今为止已经达到了4.5kV/3kA的水平。IGCT诞生于1996年,由于其核心GCT芯片是由晶闸管改进而来,因此天然具备晶闸管大容量、高可靠性的特点。IGCT器件在2000年便已经达到了4.5kV/4kA的水平,相比之下压接式IGBT直至2012年才达到相同的功率等级,随着六英寸IGCT器件在未来投入使用,IGCT在容量上仍将对IGBT保持较大优势。 另外,尽管IGBT优势突出,但是相比电流型器件,仍然存在通态压降大、可靠性低、制造成本高等问题,具有很多改进的空间。尤其是在海上风电柔性高压直流输电系统中,所使用的开关器件数量非常大,若能改进IGBT器件的特性,进一步提高效率和可靠性、减小成本,将会具有巨大的吸引力和应用前景。 2. 解决方案 模块化多电平变换器(MMC)的多电平调制大幅降低了功率器件开关频率,为集成门极换流晶闸管(IGCT)的应用带来了契机。相比IGBT,IGCT的通态压降和成本可降低达到1/3以上,并且IGCT具有非常强大的浪涌电流、短路失效和防爆能力,无需增加辅助电路便可实现冗余和防爆,确保柔直输电系统免维护的高可靠需求。该技术实现更高电压、更大功率、更高效率和可靠性的柔性直流输电系统具有重要意义和广阔的应用前景。
清华大学 2021-10-22
快速生产脱皮蒜瓣黑蒜的湿热加工技术
 一、成果简介 大蒜具有丰富的生物活性物质,具有抑制细菌生长、抑制癌细胞生长、免疫调节、改善心血管功能、辅助降血脂、辅助降血糖等功效。然而大蒜本身特有的刺激性气味、辛辣味阻碍了大蒜制品的发展。为了去除这种 刺激性气味,可以将大蒜热加工制备成黑蒜。黑蒜可直接食用,无生食鲜大蒜的不愉快气味,口感软糯香甜。传统的黑蒜加工是在烘箱中经过一定温度(65°C-90°C)、湿度(60%-80%)和
中国农业大学 2021-04-14
基于计算机视觉的产品质量在线监测技术
 该成果是面向产品质量在线检测应用领域,一种基于计算机视觉和高性能计算机构成产品在线监测系统。采用基于摄像机参数、运动目标信息状态参数和模糊控制策略的主动视觉测控模型,利用一种抽样算法的视频快速解读技术运动目标快捷检测技术,又采用高鲁棒的Camshift和Kalman滤波相结合的运动目标高可靠快捷智能识别与跟踪方法,以达到具有高可靠感知、高清晰、智能化、高精度定位、高可靠跟踪和智能信息处理检测的优势。 该成果是面向产品质量在线检测应用领域,如食品用朔料制品的在线质量检测与告警
南京航空航天大学 2021-04-14
负载纳米改性石墨氮化碳的白光连续消毒材料与技术
目前传统消毒技术有诸多缺点:紫外消毒由于紫外光光谱会杀死健康细胞,对人眼和其他器官也是危险的,所以其灭菌场所不能有人进入,大大限制了其应用范围。传统的二氧化钛催化剂由于禁带宽度3.2ev,也只能受紫外光激发有效,大大限制了其应用;臭氧消毒易分解,其灭菌场所不能有人进入,对人眼和其他器 官具有危害;酒精、84消毒剂由于挥发不具有持续消毒能力,需要经常喷洒,另外存在着使用不当引起的火灾、中毒等风险。 课题组研发的氮化碳g-C3N4功能复合膜制备可解决述痛点,该项技术具有可提高膜的亲水性、提高膜的水通量、赋予膜光催化性能、赋予膜自清洁性能和抗菌性等特点。
北京交通大学 2023-05-08
水溶性超分子载药体系的设计与技术研究
一种水溶性二茂铁超分子包合物的制备方法;一种水溶性金丝桃素超分子包合物的制备方法;一种新型的防治动脉粥样硬化的冬青素 A/聚环糊精包合物的药物组合物(IlexA-CDP)制备方法。
扬州大学 2021-04-14
工业危险气体泄漏的非制冷红外成像检测技术与装备
本项目研究突破了宽波段非制冷IRFPA、检测波段优选、宽波段红外物镜、微弱气体图像滤波增强、检测系统性能评价等理论和关键技术,实现了对典型工业危险气体(烷烃、烯烃,氨气、六氟化硫、二氧化碳、二氧化硫等)泄漏的远距离成像检测和定位,经过专业检测基地和工业现场检测验证,性能达到国际同类产品的先进水平。 一、项目分类 关键核心技术突破 二、技术分析 危险气体泄漏是当前工业重大安全隐患之一,迫切需要能够及时发现泄漏隐患,定点预防重大工业危险气体泄漏事故的先进检测技术与装备。基于气体特征吸收峰的红外光谱检测是泄漏气体非接触遥测的有效途径, 采用制冷型红外焦平面探测器(IRFPA)已被证明是工业气体泄露遥测的有效手段,但高昂的价格,且工作寿命也难以适应石油天然气与化工行业昼夜连续工作的要求。近年来非制冷红外焦平面探测器性能的迅速提高,使其用于工业气体泄漏红外成像检测成为可能。 本项目提出基于非制冷IRFPA 的工业气体泄漏成像检测技术思想,并2011 年起陆续获得北京市自然基金和首都科技条件平台科学仪器开发培育项目的支持,针对非制冷 IRFPA 灵敏度偏低,长波红外波段偏窄等问题, 研究突破了宽波段非制冷IRFPA、检测波段优选、宽波段红外物镜、微弱气体图像滤波增强、检测系统性能评价等理论和关键技术,实现了对典型工业危险气体(烷烃、烯烃,氨气、六氟化硫、二氧化碳、二氧化硫等)泄漏的远距离成像检测和定位,经过专业检测基地和工业现场检测验证,性能达到国际同类产品的先进水平。在完成工程样机基础上,近期与北京智慧共享合作研制完成在线式产品样机,现场应用示范效果明显,具备批量生产的基本转化条件。
北京理工大学 2022-08-17
超临界萃取技术提取杜仲叶总黄酮的 萃取工艺研究
项目研究背景 :我国杜仲叶资源非常丰富,在我国长江流域和黄河流 域都广泛分布,并被大量栽培年,杜仲叶总产量 300 万吨,但在大多数杜 仲产区尚未利用,以原料杜仲叶的形式和价格低廉大量出口到日韩等国, 用于生产各种药品和保健品。 技术原理 :本项目采用国际最新的超临界 CO2 萃取技术, 萃取杜仲叶 中的总黄酮,解决了杜仲叶总黄酮成分在提取分离过程中,受热易氧化、 分解的难题,杜仲叶干叶超
南昌大学 2021-04-14
基于养分回收和达标排放的畜禽粪污废水/沼液处理技术
本成果采用微生物法结合环境工程措施先行回收废水或沼液中大部分养分,然后进行生化处理,使其达标,形成生物聚沉氧化新技术。该技术已完全成熟,在四川(奶牛场)、湖南(猪场)、广东(猪场)、江苏(猪场)等地进行过系列生产性应用。 一、项目分类 显著效益成果转化 二、技术分析 规模化畜禽养殖产生大量高浓度的粪污废水或沼液亟待处理。本成果采用微生物法结合环境工程措施先行回收废水或沼液中大部分养分,然后进行生化处理,使其达标,形成生物聚沉氧化新技术。该技术已完全成熟,在四川(奶牛场)、湖南(猪场)、广东(猪场)、江苏(猪场)等地进行过系列生产性应用。2018年获中国环保产业协会颁发的中国重点环境保护实用技术称号。取得国家系列发明专利(如ZL 201510843625.9;ZL 201110158682.5)。 畜禽粪污废水/沼液生物聚沉氧化处理新技术可在极短时间内(1h左右)回收废水或沼液中90%以上的总养分(COD,TN, TP),使外观黑臭浓稠的废水很快变成透明的清澈废水,然后再经过2-5d的生化处理可达到行业排放标准或农田灌溉水标准。
南京农业大学 2022-07-25
具有抗菌性能的锍盐类阳离子聚合物制备技术
抗菌材料是指其本身具有杀灭或者抑制微生物生长的材料的总称,一般根据其结构的不同可以分为以下几大类:无机抗菌材料、有机抗菌材料、有机无机复合抗菌材料、天然抗菌材料以及高分子抗菌材料。其中,高分子抗菌材料基于天然及有机抗菌材料进行开发,将二者优势结合在一起,其最大的优点是分子结构的可设计性。 一、项目分类 关键核心技术突破 二、成果简介 细菌是感染疾病和食源性疾病中常见的病原体,特别是在医疗资源匮乏和公共卫生相对差的地区,细菌感染己成为近年来主要的健康威胁之一。目前,针对细菌感染问题的主要处理方法是使用抗生素。但是,近年来由于抗生素的滥用,导致了全球范围内细菌耐药性的增加以及耐药菌感染的不断加剧。因此,开发新型高效的广谱抗菌材料势在必行。 抗菌材料是指其本身具有杀灭或者抑制微生物生长的材料的总称,一般根据其结构的不同可以分为以下几大类:无机抗菌材料、有机抗菌材料、有机无机复合抗菌材料、天然抗菌材料以及高分子抗菌材料。其中,高分子抗菌材料基于天然及有机抗菌材料进行开发,将二者优势结合在一起,其最大的优点是分子结构的可设计性。
华中科技大学 2022-07-27
工业固体废弃物的无害化及资源化技术
1. 对含重金属的各类废物,如:垃圾焚烧灰、污染的淤泥、土壤等进行无害化处理。 特别是对于垃圾焚烧发电厂垃圾焚烧飞灰,利用高效的重金属处理药剂,结合先进工艺对其进行无害化处理,使其达重金属浸出毒性到国家相关标准。 2. 对工业废弃物,在充分研究其化学成分的基础上,进行资源化利用。 特别是对于垃圾焚烧灰渣、钒钛工业废渣、废玻璃等固体废弃物,使之转化为陶瓷瓷砖、多孔砖等建筑材料。 部分成果为校企产学研合作成果。
四川大学 2015-06-02
首页 上一页 1 2
  • ...
  • 108 109 110
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1