高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
手性氨基酸的微生物高效生产方法
手性氨基酸作为最重要的原料和中间体,市场规模也越来越大。本项目研发的手性氨基酸包含 L-2-氨基丁酸、D-苏氨酸、L-天冬酰胺、L-叔亮氨酸、L-色氨酸等。2-氨基丁酸是一种非天然的氨基酸,是一种重要的化工原料,被用作为多种手性药物合成中的重要中间体,包括抗结核药物乙胺丁醇、布瓦西坦和抗癫痫 药物左乙拉西坦。D-苏氨酸是天然氨基酸 L-苏氨酸的光学异构体,是一种非天然氨基酸。主要应用于手性药物、手性添加剂和手性助剂等领域,在制药行业作为手性合成的手性源,主要用于生产新型光谱抗生素、D-苏氨醇和多肽合成过程的苏氨酸保护剂。L-天冬酰胺是常见的 20 种氨基酸之一,在食品、医药、化工合成、微生物培养等领域广泛应用。L-天冬酰胺可以作为添加剂用于清凉饮料,同时在肿瘤治疗及蛋白质糖基化中扮演重要角色。L-天冬酰胺常用于氨基酸输液,以及具有降压、平喘、抗消化性溃疡、胃功能障碍等功能,并可用于治疗心肌梗死、心肌代谢障碍、心力衰竭、心脏传导阻滞、疲劳症等。此外,L-天冬酰胺也是微生物培养和动物细胞培养重要的添加剂。L-叔亮氨酸是一种非蛋白原的手性氨基酸, 由于叔丁基的空间位阻大, 叔亮氨酸的衍生物可在不对称合成中作为诱导不对称的模板。随着不对称合成的发展, 叔亮氨酸的应用也非常广泛。又由于占空间大的叔丁基链及其疏水性, 它在多肽的合成中能够很好地控制分子构象, 增加多肽的疏水性和受酶降解的稳定性, 因此在药物和生物应用中正迅速地发展, 用于抗癌、抗艾滋病等药物和生物抑制剂及肽等。
江南大学 2021-04-11
L-甲硫氨酸的微生物高效生产方法
L-甲硫氨酸广泛应用于饲料业,是家禽饲料中首选的限制性氨基酸。L-甲硫氨酸是强肝解毒剂、促进发育剂,当缺乏时会引起食欲减退。甲硫氨酸广泛应用于营养补充与畜产饲料,由于甲硫氨酸容易被鸡吸收而转变为鸡肉蛋白,在鸡饲料中添加甲硫氨酸,可少耗饲料,并使鸡肉生长健全。L-甲硫氨酸合成方法主要为化学合成法和微生物发酵法两种。因化学合成法会产生大量有害物质,微生物发酵法生产甲硫氨酸越来越受到关注。本实验室以谷氨酸棒状杆菌为出发菌株,通过代谢工程技术手段进行基因敲除和敲入,以达 到“开源节流”,即增强 L-甲硫氨酸合成路径代谢流,抑制或阻断旁路途径代谢流,最终提高 L-甲硫氨酸产率,目前中间菌株产率已达 21 mmol/L,具有重要的应用前景。 
江南大学 2021-04-11
L-苏氨酸的微生物高效生产方法
L-苏氨酸在食品、饲料、医药和化妆品等领域的用量呈长期稳定增长趋势,尤其在饲料添加剂中增长最为迅速。以添加了 L-苏氨酸的低蛋白配方饲料作为家禽日粮,不但可以缓解天然蛋白的匮乏,减少动物氨的排放,还能提高家禽的生产性能。而在医药领域,L-苏氨酸除了用于氨基酸输液之外,随着人类保健意 识的提高,各类氨基酸保健饮品涌现市场,L-苏氨酸是必不可少的配方成分。L-苏氨酸有望取代色氨酸,成为继赖氨酸和甲硫氨酸之后第三大发展最迅速的氨基酸。因此 L-苏氨酸产业迫切需要提高产量,降低成本,以满足市场需求。本实验室以谷氨酸棒状杆菌为出发菌株,通过代谢工程技术手段进行基因敲除和敲入,对关键基因进行了测序、蛋白结构解析及定向改造,以达到“开源节流”,即增强 L-苏氨酸合成路径代谢流,抑制或阻断旁路途径代谢流,最终提高L-苏氨酸产率近 20 倍,具有较好的应用前景。
江南大学 2021-04-11
高品质普鲁兰多糖的高效发酵新技术
已有样品/n普鲁兰多糖主要是由α-1.4 葡萄糖苷键连接的聚麦芽三糖,分子结 构中含 1/3 的α-1.6 葡萄糖苷键,2/3 的α-1.4 葡萄糖苷键,分子量一 般在 4.8×104-2.2×106 Da,易溶于水,安全无毒、可食用、成膜性好、 簿膜隔气性佳,可以加工成系列产品。目前,普鲁兰多糖主要应用于食 品、化妆品、医药领域以及制备胶囊、微胶囊等包装材料。尤其是我国 每年用于制备胶囊的明胶消耗量为 10000 吨以上,西欧因受风牛病影响 及一些伊斯兰国家拒绝使用动物胶囊,植物胶囊替代动物胶囊是
华中科技大学 2021-01-12
一种高效排种的马铃薯播种机
本实用新型公开了一种高效排种的马铃薯播种机,涉及农业机械设备领域,包括主机架和设置在主机架前端的悬挂装置,还包括设置在主机架中部的排种器装置、主机架底端的地轮行走系统、主控系统和设置在主机架前端底部的旋耕装置;所述排种器装置包括驱动电机、上传动轮、下传动轮、勺链、取种勺、金属箔片、挡片、偏心轮、霍尔传感器、压电传感器和对射式光电传感器。本实用新型的有益效果是,能够在联合种植过程中播、检、补集于一体化,解决了种植过程中人工观察漏播及补种的问题,实现了无人看守自动检测与补种,提高工作效率;避免一坑两种以及堵塞排种器;提高翻土的效率,降低土中的碎石或者硬土块磨损旋耕刀。
青岛农业大学 2021-04-13
用于水体油性污染物快速高效吸收的海绵
本技术以廉价易得的聚氨酯海绵为基底,通过原子层沉积技术(ALD)和单分子偶联改性,在聚氨酯海绵骨架上构建了厚度约5nm的改性层。该方法在不减弱海绵自身高弹性及高孔隙率的前提下对其进行表面改性,赋予其强憎水亲油特性. 同时该方法改性物质消耗量少、操作简单,保证了吸油海绵的低廉成本。改性后聚氨酯海绵可在水面下快速且高选择性地吸收多种油类与有机溶剂;且吸收容量在海绵自重100倍以上,高出报道的高分子吸油材料5-50倍.吸油后海绵通过挤压即可脱油再生,循环使用率高。能够达到重复使用60次以上吸油量仅减少约10%。
南京工业大学 2021-04-13
三种高效表达人抗体全基因的平台
北京工业大学 2021-04-14
饲料用氨基酸的高效微生物制造
全球氨基酸市场需求增长势头强劲,年均增长5.6%以上。2017年,全球年产量已达850万吨,总销售额超百亿美元。目前,氨基酸的生产主要有三种方法,包括微生物发酵法、化学合成法和酶法水解法等。其中,微生物发酵法因其产能高、成本低等优势,作为最主要的方法,生产了全球总产量85%以上的氨基酸。为应对不断升级的市场需求,氨基酸发酵企业亟需提高发酵产量和拓展氨基酸品种,而关键在于获得氨基酸高产菌株。现有的氨基酸高产菌株筛选方法如氨基酸类似物筛选法,存在毒性高、阳性率低及种类受限等问题,无法满足筛选需求。因此,开发全新的氨基酸高产菌株筛选方法具有十分重要的科学意义和应用价值。 项目组通过增加序列中稀有密码子的数量来提高蛋白翻译所需氨基酸浓度的“门槛值”,利用必需基因和颜色蛋白编码基因,建立了氨基酸高产菌株的选择和筛选体系,并证明了该方法在大肠杆菌和谷氨酸棒状杆菌中的可行性。本研究为氨基酸高产菌株的筛选提供了新系统,理论上可用于任何一种天然氨基酸高产菌株的筛选,同时也为氨基酸高产机制的发现提供了新思路,可用于氨基酸发酵生产中优良菌株的构建,进而推动氨基酸市场的增长,促进氨基酸在饲料、食品、医药等民生领域的应用。 目前,微生物细胞工厂的遗传改造已经基本完成,正在进一步的改造。发酵生产的浓度、产率和速率都达到国际先进水平。进一步的提高正在研究进行中。
北京理工大学 2023-05-10
难加工材料的高效特种切削加工技术(技术)
成果简介:具有对新型高硬超高强度钢、不锈钢、新型复合材料、钨合金、硅铝合金和灰铸铁的精密高效切削工艺和刀具成套技术。开发了能对FMS的刀具管理和可靠性寿命进行预报,对金刚石涂层刀具薄膜与基体结合强度、新型刀具材料切削性能进行分析的系统软件以及高速孔加工刀具CAD软件系统。切削高硬超高强钢的速度可达150m/min,切削不锈钢的速度可达200m/min,提高生产效率30%。 项目来源:自行开发 技术领域:先进制造 应用范围:以难加工材料为对象的机械加工或刀具
北京理工大学 2021-04-14
饲料用氨基酸的高效微生物制造
全球氨基酸市场需求增长势头强劲,年均增长5.6%以上。2017年,全球年产量已达850万吨,总销售额超百亿美元。目前,氨基酸的生产主要有三种方法,包括微生物发酵法、化学合成法和酶法水解法等。其中,微生物发酵法因其产能高、成本低等优势,作为最主要的方法,生产了全球总产量85%以上的氨基酸。为应对不断升级的市场需求,氨基酸发酵企业亟需提高发酵产量和拓展氨基酸品种,而关键在于获得氨基酸高产菌株。现有的氨基酸高产菌株筛选方法如氨基酸类似物筛选法,存在毒性高、阳性率低及种类受限等问题,无法满足筛选需求。因此,开发全新的氨基酸高产菌株筛选方法具有十分重要的科学意义和应用价值。 项目组通过增加序列中稀有密码子的数量来提高蛋白翻译所需氨基酸浓度的“门槛值”,利用必需基因和颜色蛋白编码基因,建立了氨基酸高产菌株的选择和筛选体系,并证明了该方法在大肠杆菌和谷氨酸棒状杆菌中的可行性。本研究为氨基酸高产菌株的筛选提供了新系统,理论上可用于任何一种天然氨基酸高产菌株的筛选,同时也为氨基酸高产机制的发现提供了新思路,可用于氨基酸发酵生产中优良菌株的构建,进而推动氨基酸市场的增长,促进氨基酸在饲料、食品、医药等民生领域的应用。 目前,微生物细胞工厂的遗传改造已经基本完成,正在进一步的改造。发酵生产的浓度、产率和速率都达到国际先进水平。进一步的提高正在研究进行中。
北京理工大学 2022-04-18
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1