高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种具有高效解密特性的基于身份匿名广播加密方法
本发明公开了一种具有高效解密特性的基于身份匿名广播加密 方法,属于密码学和计算机安全领域。本方法涉及三方实体:发送方、 密钥生成中心、接收方(授权接收者集合)。发送方预先指定接收方,使 用接收方公钥将明文加密为密文之后经广播发送给接收者。密钥生成 中心负责参数的生成与传递,将主公开参数发送给每个授权接收者, 将主秘密参数保密,将私钥发送给对应的授权接收者。授权接收者在 接收到密文之后能够使用自身的私钥定位并提取出属于
华中科技大学 2021-04-14
智能快热电器 ——基于柔性超薄复合膜的高效电热转化
智能高效电热转化项目主要专注于新型柔性纳米复合电热薄膜材料的研发及其在快热高温电器中的应用,相关研究成果已拥有与本项目直接相关的国家专利17项(其中11项已经授权)。项目团队向目标客户提供高效、低能耗、低成本、超薄轻质柔性适用于各类电器的电热膜材料及智能控温解决方案。 目前我们的主要产品“智能快热电器”核心部件是纳米无机碳/氧化物复合薄膜材料··· (厚度仅10微米、电热转化效率达80%,具有纤薄、耐高温、轻便、稳定性强的优点),并基于柔性非金属导线技术和智能化电源管理
南京大学 2021-04-14
超高效纳米高分子吸附材料及在制药中的应用
本项目发展了一种新的高分子纳米粒子制备技术,研制了超高效纳米球粒制备平台,制备高分子粒子种类包括:单烯和双烯类化合物为单体的系列高分子纳米球粒材料。球粒形态有球体、囊状、纺锤以及核壳结构。此制备平台所得到的超高效球粒特点是不含任何表面活性剂和离子基团,纳米球体在水溶液中可稳定存在,不团聚。球体粒径可控在30-800nm,球体表面光洁、组份单一、具有单分散性。 超高效纳米吸附材料在制药中具有重要应用前景,多种吸附药物的试验结果表明,此类纳米粒子具有超常的溶胀和吸附能力。另外,对药物结晶
南开大学 2021-04-14
高效溶血栓药—重组人纤溶酶原激活剂的研制
重组人纤溶酶原激活剂是由转基因动物(兔、羊)乳腺生物反应器生产的一种新颖溶血栓药,具有成本低、产量高、产物活性高的特点。目前,已经获得了高效表达(rhPA)的转基因兔和羊,并从中提取获得纯品,体内和体外的初步药效试验表明, rhPA 的溶栓活性是现有同类药物的 20 倍(体内)至 200 倍(体外),具有极高的开发价值。
扬州大学 2021-04-14
一种井下耐高温高效传递激波的胶膜护套装置
本发明公开了一种井下耐高温高效率传递激波的胶膜护套装置, 其置于柱型液电脉冲激波发射器的侧面,主要由胶膜护套、密封钢圈 与紧固装置组成。胶膜采用耐高温(300℃)、耐热性、抗氧化性、耐油 性、耐腐蚀性、伸长率在 200%以上的材料。胶膜护套表面光滑,能 耐受激波的高强度重复瞬时机械冲击。胶膜护套能保持激波发射器内部的清洁,使放电液体的参数与放电回路及液电间隙匹配程度最优, 提高激波发射器由电能向机械能的转换效率。胶膜能够高效将激波能 量传递到胶膜护套外,对激波的波形不产生大幅度畸变,提高激波的 机械
华中科技大学 2021-04-14
一种高效催化合成喹啉类衍生物的方法
(专利号:ZL 201410460926.9) 简介:本发明公开了一种高效催化合成喹啉类衍生物的方法,属于有机合成技术领域。该合成反应中活泼α-甲基或亚甲基羰基化合物与2-氨基苯乙酮的摩尔比为1∶1,多磺酸根酸性离子液体催化剂的摩尔量是所用2-氨基苯乙酮的7~10%,反应溶剂75%乙醇水溶液的体积量(ml)为2-氨基苯乙酮摩尔量(mmol)的3~5倍,回流反应时间为5~25min,反应结束后冷却至室温,过滤,所得滤渣真空干燥得到纯喹啉类衍
安徽工业大学 2021-01-12
一种高效的动力煤选前气流分级脱粉机
本发明属于煤炭洗选前脱粉分级技术领域,具体涉及一种高效的动力煤选前气流分级脱粉机。本脱粉机包括如下组成部分:使物料在气流冲射下经碰撞后彼此分散的物料分散区;经 360度全环向布风布料机构将分散后的物料分为一次细颗粒物料和一次粗颗粒物料的一次分级区;经风力旋转驱动分级机构将一次细颗粒物料分为二次细颗粒物料和二次粗颗粒物料的二次分级区,二次细颗粒物料和二次粗颗粒物料分别排出二次分级区以完成最终分级。 本发明的物料分级过程包含两次分散和两次分级,在提高了分级效率的同时从根本上解决了筛孔堵塞问题,实现了分级粒度在 0~13mm 间根据需要进行调控,满足了全粒级干法的分级、分选要求和确保了坑口电厂用循环流化床炉发电用煤。
安徽理工大学 2021-04-13
高性能角蛋白酶的高效表达与应用研究
角蛋白酶是一种特异性蛋白酶类,可降解结构复杂、硬质难溶的角蛋白,具有多种优良的催化特性,在生物加工、绿色制药、废弃生物质处理、生物制革、生态纺织、洗涤剂等实际应用中备受关注,被认为是有着巨大应用潜力和市场前景的新一代蛋白酶类。 本项目从角蛋白酶基因挖掘、高效表达、性能改造及其应用研究等方面开展了一系列工作。课题组目前建立了角蛋白酶资源库,是我国拥有角蛋白酶基因资源产权最多和最具多样性来源的单位;实现了角蛋白酶基因在大肠杆菌及枯草芽孢杆菌等外源宿主中的克隆及高效表达;在 5L 罐上发酵酶活最高可达10000 U/mL 以上,是目前文献报道的重组角蛋白酶表达最高水平;项目已完成了 1M3 规模中试试验,成本降低 30%以上。在应用方面,本项目成功将角蛋白酶用于生物法制备纳米银粒子 AgNPs,与传统化学法相比,酶法合成的纳米银具有更好的抑菌活性。另外,项目组已首次开发出无胶原活力的高特异性角蛋白酶,具有高角蛋白活力,不会对皮革胶原造成破坏,能保护胶原结构完整性,可开发出不伤及皮肤真皮的洗涤剂产品、药品及化妆品,在生物制革领域也具有极大应用价值,可缓解制革工业中的烂皮现象;同时本研究所开发的角蛋白酶在活性多肽制备中也表现出良好的应用前景。
江南大学 2021-04-13
高效蓄能型多色稀土夜光纤维及制品的研制
利用稀土元素有未充满的 4f 壳层和 4f 电子被外层电子屏蔽的特性,将稀土铝酸盐基质移植到聚合物基体中,生成具有夜光性的蓄光型纺丝液,所纺出的纤维在受光时捕集激发态电子,停止光照后持续的发光跃迁。该项目得到了国家“863”计划和国家自然科学基金的资助。稀土夜光纤维是以纺丝原料为基体,添加长余辉稀土铝酸盐发光材料,经特种纺丝制成夜光纤维。该夜光纤维吸收可见光 10 分钟,便能将光能蓄贮于纤维之中,在黑暗状态下持续发光 10 小时以上。夜光纤维色彩绚丽,且不需染色,是环保高效的高科技产品。该纤维及其织物可广泛应用于建筑装潢、交通运输、夜间作业、日常生活及娱乐服装等领域。 目前,本研究室研发的夜光纤维已成功实现产业化,并得到企业,社会的广泛好评,取得了良好的经济和社会效益。 关键技术 (1)采用高温固相法控制制备不同色光的高效储能稀土夜光材料; (2)通过表面改性和功能助剂的双重作用实现夜光材料在不同基体材料的均匀分散; (3)通过复合纺丝技术制备不同色光的夜光纤维,同时保证其力学性能; (4)只需吸收紫外光或可见光 10 分钟,便可持续 10 小时以上发光。 知识产权及项目获奖情况 发表学术论文 30 余篇;申请专利 15 项,授权专利 3 项;所获奖项: 2005 获得江苏省科技进步二等奖,2013 年获纺织工业协会科技进步二等奖, 2013 年获中国商业联合会科技进步一等奖。 4 项目成熟度 实现产业化生产。 5 投资期望及应用情况 目前已与部分企业合作,将夜光纤维应用于玩具、服装等领域。 
江南大学 2021-04-13
不锈钢管列置双TIG电弧高效低能耗焊接生产技术
广泛应用于汽车、锅炉及装备制造等行业的不锈钢焊管是我国钢铁行业重点发展的高端不锈钢精品深加工产品,其由钢带卷制成管而由钨极氩弧焊接(TIG)而成,但在高速焊接生产过程中会出现咬边和驼峰焊道成形缺陷,成为不锈钢管高效焊接生产的技术“瓶颈”和行业技术发展的堵点、难点。基于此,通过研究揭示不锈钢管TIG焊接生产提速后出现的咬边、驼峰焊道表面成形缺陷形成机理,提出利用辅助TIG电弧对熔池进行热力联合调控抑制高速TIG焊接过程中咬边和驼峰焊道的形成,发明了列置双TIG电弧(Tandem TIG)高效低能耗焊接工艺,将咬边和驼峰焊道缺陷防止在萌芽状态;与单TIG焊相比,焊接速度提高1倍以上,能耗降低20%以上,很好地解决了焊接高质量和高效率难平衡的问题;开发了钨极烧蚀在线监测系统和不锈钢管在线固溶热处理系统,实现了不锈钢管高效、低能耗、低成本焊接生产,提升了不锈钢焊管行业技术水平。在此基础上,基于相同热力调控理念开发了TIG电弧辅助MIG/MAG电弧高速焊接工艺,焊接速度提高75%。项目累计授权发明专利5件,制定团体标准2项,工信部认定节能技术1项,获中国专利优秀奖等科技奖励6项。项目成果推动和引领不锈钢焊管生产向高效、低能耗方向发展,具有显著的技术优势和应用前景。 (a)工艺原理 (b)列置双TIG电弧和熔池图像 图1 列置双TIG电弧高速焊接工艺原理 (c)铁素体不锈钢焊管 (d)奥氏体不锈钢焊管 图2 不锈钢管列置双TIG电弧高速焊接生产 图3 钨极烧损在线监测系统 图4 奥氏体不锈钢管高速焊接生产过程中在线固溶热处理工艺流程
山东大学 2025-02-08
首页 上一页 1 2
  • ...
  • 30 31 32
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1