高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
中国工程科技发展战略内蒙古研究院关于征集2023年咨询研究项目选题的通知
2023年4月,内蒙古自治区政府与中国工程院成立中国工程科技发展战略内蒙古研究院(以下简称“内蒙古研究院”)。为充分发挥内蒙古研究院高端智库作用,按照《中国工程科技发展战略内蒙古研究院咨询研究项目管理办法》要求,征集2023年咨询研究项目选题,现将有关事项通知如下。
内蒙古自治区科学技术战略研究中心 2023-07-14
西安交大电光晶体研究成果在《科学》发表
电光晶体是电光调制器、电光开关、电控光束偏折器等重要电光器件中的核心关键材料,广泛应用于光纤陀螺、激光雷达、量子通信等前沿技术领域。目前,电光器件小型化、轻量化、集成化、低驱动电压和低功耗的发展趋势,对晶体的电光性能提出了更高的要求。
西安交通大学 2022-04-22
石墨烯体系单原子缺陷研究进展发表
石墨烯中电子除了自旋这个内秉自由度,还有子格赝自旋和谷赝自旋自由度。石墨烯中电子的多自由度给石墨烯带来了很多新奇的物理性质。单原子缺陷是材料体系中最简单的缺陷形式,可以作为一种模型体系来帮助了解缺陷对材料性质的影响和调控。物理学系何林教授课题组长期致力于研究石墨烯中的单原子缺陷,发现缺陷可对石墨烯中自旋、子格赝自旋和谷赝自旋相关的电学性质产生深刻影响。例如,他们利用扫描隧道显微镜(STM)首次证实石墨烯中单原子空位缺陷存在局域自旋磁矩,并在原子尺度上实现了对其自旋磁矩调控,实现了三种自旋量子态;观测到石墨烯中单原子缺陷引入的对称性破缺态,并系统地测量了缺陷附近谷极化和谷依赖的自旋极化在实空间的分布情况。 石墨烯中电子的子格赝自旋来自于其六角晶格结构,有A和B两套子格,因此波函数数学形式上类似于自旋。对于电子自旋有很多有意思的可观测物理现象,那么对应石墨烯中的子格赝自旋是否有可观测的物理现象呢?带着这一问题,何林教授课题组开展了深入研究。他们发现石墨烯中的单原子缺陷可以使准粒子在石墨烯手性不同的两个谷之间发生弹性散射,并伴随着子格赝自旋的旋转,在缺陷附近产生一个原子尺度的子格赝自旋涡旋,而赝自旋在涡旋(单原子缺陷)的绕数直接反映了体系的Berry相位(图1)。通常来说,贝利相位的测量需要借助于外加磁场,因为磁场可以驱动准粒子沿闭合的轨迹绝热运动,所以这一的结果提供了一个简单的方法测量不同层石墨烯Berry相位的方法。何林教授课题组利用STM测量单原子缺陷引起的谷间散射形成的电荷密度波振荡,证明电荷密度波振荡在实空间中增加的额外波前条纹数直接反映了子格赝自旋在涡旋的绕数,从而可直接测量不同层石墨烯的Berry相位。最近的工作中,他们对双层石墨烯进行了详细的研究,并将相关结果推广到多层石墨烯体系。进一步他们还研究了相同和相反绕数的子格赝自旋涡旋的量子干涉。上述结果直接证明了子格赝自旋有很多丰富有趣的物理现象亟待深入研究,也为子格赝自旋物理提供了全新的研究思路。
北京师范大学 2021-02-01
华东师大发布多项脑研究新成果
结果发现,对视频材料的偏爱与学生-示范者之间的左侧颞叶脑间同步有关;相比前期,这种相关性在观看后期更强;脑同步可区别,甚至预测学生对视频材料的偏好程度。这些实验结果表明:一个视频材料之所以受学生喜欢,是因为这个材料更容易导致学生-示范者的大脑同步;学生较早感兴趣于视频材料所呈现的内容,则可预测接下来的视频内容;一旦预期得到验证,就给人带来一种愉悦感。也就是说,好听、好看的视频材料,其原因是众多观众与示范者的“不谋而合”与“大脑共鸣”。此外,研究团队还原了具有高生态效度的师生互动教学场景,教师面对面地向学生教授知识(心理学领域);设计了两类教学方式:一类是教师逐步提供难度渐进的问题,引导学生自己解决问题,这称为支架式教学;另一类是教师提供一些信息,诠释重要的术语、概念和原理,这被称为解释性教学。在两类教学活动中,研究者也采用近红外脑成像技术,全程同步采集师生两个人的大脑活动。 结果发现,师生间大脑活动在教学过程中趋向同步;这种师生脑同步依赖于教师使用的教学策略;这就是,当教师采用支架式教学时,其与学生的脑同步,比解释性教学时更强;这种增强的师生脑同步,可预测学生的学习表现。 为了厘清师生脑同步和具体教学行为之间的关系,研究者用视频编码技术,发现了师生脑同步的增强与教师采用的支架行为有关(如询问引导性问题,提供暗示等);但是,当教师执行解释行为(如提供定义或澄清概念等)时,师生脑同步则比较弱。基于这些结果,研究建议:教师在教学活动中,除了要进行必要的概念解释外,可以提出一些由易到难的问题,帮助学生思考所学内容及其关系;这些问题因人而异时,效果最好。
华东师范大学 2021-02-01
中国参与国际经济治理的对策研究
课题组对中国在国际经济治理中的定位,参与国际经济治理战略模式选择,参与国际景致里的主体选择等方面,提出了具有较强针对性和创新性的对策建议,对财政部相关四局的实际工作有较好的借鉴作用和应用价值。
中央财经大学 2021-02-01
光伏发电逆变系统的研究和开发
我们对如何通过预测控制的各要素设计,提升逆变系统的性能指标,进行研究,取得了良好的成果。对LCL型三电平逆变系统,我们在分析系统指标与系统控制量之间关系的基础上,设计了相应的基于个离散控制量的预测控制器,为解决该类非线性约束优化在线计算量大的问题,基于分值定界的思想提出了相应基于DSP的快速算法。为进一步提升逆变系统的效率等指标,我们提出了变系数的光伏逆变预测控制器,在目标函数中对电流跟踪和大电流时开关动作的抑制实现了统一,设计了相应的系数表达式并给出相关算法和实验结果。我们进一步研究了基于预测控制的微电网系统的调度问题,针对微电网群系统集中式优化计算量巨大的问题,我们从结合ADMM,从给出了系统的分布式预测控制器并对其在线迭代算法并进行了研究和验证。同时,我们对无线并联型逆变系统的稳定性进行了分析。达到了预期研究目标。
南昌航空大学 2021-05-04
中心体调控大脑皮层发育机制研究
放射状胶质细胞是大脑发育最为关键的一种神经前体细胞,分裂产生大脑皮层几乎所有的神经元和胶质细胞。所有动物细胞都有中心体,通常位于细胞核附近的细胞质中。然而中心体在放射状胶质细胞内的定位十分独特,位于远离细胞核的顶端细胞膜上,即脑室腔的表面上。这种独特的亚细胞特征已被发现数十年,但其成因及功能一直令人困惑。图1. 中心体的顶端膜锚定调控神经前体细胞机械特性和大脑皮层的大小及折叠时松海教授和史航研究员课题组采用基于透射电镜成像的连续超薄切片技术,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1)。为了探索其分子调控机制和生理功能,研究人员在大脑皮层放射状胶质细胞内特异性地去除了远端附属物的重要构成蛋白CEP83,使得远端附属物无法形成,从而阻止中心体与细胞膜的连接。结果发现,去除CEP83蛋白后,母体中心粒上不再形成远端附属物,中心体和顶端膜发生了微小的错位,不再锚定在顶端膜上。进一步研究表明,中心体这一不足1微米的位移,不是通过影响初级纤毛的形成,而是破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。这一物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞显著增加,体积扩大,并引发异常折叠。论文链接:https://www.nature.com/articles/s41586-020-2139-6
清华大学 2021-04-10
非编码RNA的染色质结合机制研究
哺乳动物基因组的广泛转录产生了大量的非编码RNA,相比于细胞质定位的蛋白编码mRNA,这些非编码RNA如长链非编码RNA(lncRNA)、启动子和增强子关联的不稳定转录本(uaRNA、eRNA)等更倾向于结合染色质参与调控染色质结构、转录和RNA加工等过程。尽管零星报导少数RNA核滞留的现象,但为何大部分lncRNA会滞留于染色质上行使调控功能,仍是个不解之谜。上世纪80年代初,Joan Steitz通过系统性红斑狼疮患者血液抗体分离提取 U1,U2, U4, U5和U6小核糖核蛋白粒子(又称为 snRNP),揭示了它们参与RNA剪接的经典功能。近年来施一公团队系统报导了真核生物剪切体的原子结构和生化功能。然而,一直让人困惑的是,细胞内U1 snRNP的数量为什么比其它剪接相关snRNP高 2-5倍。虽然Gideon Dreyfuss和Phil Sharp等团队曾揭示U1 snRNP调控转录终止和方向的非经典功能,U1 snRNP在细胞中的丰富存在仍然是一个让人困惑的问题。为了探究lncRNA的染色质结合机制,研究者首先建立和运用一套新颖的mutREL-seq方法来高精度筛选调控RNA定位的关键序列,意外发现了U1 snRNP识别位点参与调控候选RNA的染色质滞留。相比于蛋白编码基因,lncRNA转录本含有更多的U1识别位点(同时也是潜在的5’剪接供体位点),而其基因组区域具有更少的3’剪接受体位点。并且U1 snRNP更高水平地结合在lncRNA上。随后,研究者分别使用antisense morpholino oligos(AMO)和auxin-induced degron(AID)诱导蛋白降解系统,来抑制U1 snRNA和核心蛋白组分SNRNP70的功能。研究者发现小鼠胚胎干细胞中近一半的lncRNA受U1 snRNP调控。另外,与转录调控元件关联的不稳定非编码转录本如uaRNA、eRNA等,它们的染色质结合在U1 snRNP抑制后也显著下降。研究者进一步证明了U1 snRNP直接调控成熟lncRNA与染色质的结合,而不是通过影响RNA合成、加工或降解过程的动态变化所产生的间接影响。机制上,研究者鉴定了U1 snRNP在染色质上的互作蛋白,发现U1 snRNP结合特定磷酸化状态的RNA转录聚合酶II(Pol II)。转录抑制明显降低了U1 snRNP及其所调控的非编码RNA与染色质的结合,表明U1 snRNP通过与磷酸化的Pol II互作来介导其互作RNA与染色质的结合。最后,研究者通过以lncRNA Malat1为例,进一步验证了U1 snRNP对其染色质结合的调控作用。去除SNRNP70后,绝大部分Malat1 “核斑”定位信号消失,并弥散在核质及细胞质中。同时,Malat1在活跃表达基因染色质区域的结合信号显著下降,表明U1 snRNP不仅可以将Malat1滞留在染色质上,同时也参与调控后者在染色质上的移动及其与靶基因的结合。综上,研究者提出如下模型(图1):5’和3’剪接位点在lncRNA上的不对称分布,致使U1 snRNP持续结合在lncRNA转录本上,而不能通过RNA剪接过程释放,从而介导了lncRNA的染色质滞留。磷酸化Pol II进一步介导了lncRNA-U1 snRNP复合体在染色质上的移动(mobilization)。对于大多数低丰度、不稳定的lncRNA,它们只能靶向结合邻近的染色质区域(顺式cis作用);而对于少数稳定和高丰度的lncRNA,如Malat1,U1 snRNP促进了其迁移和结合更多的靶基因区域(反式trans作用)。图1. U1 snRNP介导非编码RNA染色质结合的模式图。论文链接:https://www.nature.com/articles/s41586-020-2105-3
清华大学 2021-04-10
新冠病毒在体内的改变模式的研究
2020年2月19日,中山大学团队与广东疾病预防控制中心联手在国际顶级医学期刊新英格兰医学杂志NEJM 在线发表题为"SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients"的研究。 该研究分析了从17例有症状患者获得的鼻拭子和咽拭子中的病毒载量与任何症状发作日的关系。症状发作后不久就检测到较高的病毒载量(与Ct值成反比),鼻子中的病毒载量高于喉咙。研究分析表明,感染SARS-CoV-2的患者的病毒核酸改变模式与流感的患者相似,并且看起来与感染SARS-CoV的患者不同。在无症状患者中能检测到病毒载量,与有症状患者相似,表明无症状或症状轻微患者的传播潜力。 这些发现与有关传播可能在感染过程中早期发生的报道相一致,这表明病例的发现和隔离可能需要与控制SARS-CoV所需要的策略不同的策略。对口咽中症状很少或没有症状且可检测病毒RNA水平适中的患者至少持续5天的鉴定表明,需要更好的数据来确定传播动态并为我们的筛查实践提供信息。 2020年2月19日,中山大学团队与广东疾病预防控制中心联手在国际顶级医学期刊新英格兰医学杂志NEJM 在线发表题为"SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients"的研究。 该研究分析了从17例有症状患者获得的鼻拭子和咽拭子中的病毒载量与任何症状发作日的关系。症状发作后不久就检测到较高的病毒载量(与Ct值成反比),鼻子中的病毒载量高于喉咙。研究分析表明,感染SARS-CoV-2的患者的病毒核酸改变模式与流感的患者相似,并且看起来与感染SARS-CoV的患者不同。在无症状患者中能检测到病毒载量,与有症状患者相似,表明无症状或症状轻微患者的传播潜力。 
中山大学 2021-04-10
N端RNA结合域的晶体结构研究
2020年3月8日,中山大学第五医院在bioRxiv上上传了一篇题为Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveal spotential unique drug targeting sites的研究,确定了SARS-CoV-2核糖蛋白N-端RNA结合域的晶体结构。虽然整体结构与其他冠状病毒核N端RNA结合域相似,但它们之间的表面静电电位特征却不同。与轻度病毒类型HCoV-OC43 等效域的进一步比较显示,β-螺旋核心旁边具有独特的潜在RNA 结合槽。结合体外数据,结果提供了SARS-CoV-2N端RNA结合域的几种原子分辨率特征,指导了针对SARS-CoV-2的新型抗病毒剂的设计。
中山大学 2021-04-10
首页 上一页 1 2
  • ...
  • 41 42 43
  • ...
  • 190 191 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1