高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
木质素基优质碳纤维材料
本项目以生物质废弃物作为原材料代替传统的高成本碳纤维生产方法有利于将农业与工业生产结合于生物经济中,制造可再生产品符合绿色经济发展战略。 一、项目分类 关键核心技术突破 二、成果简介 高质量的碳纤维以其高强度、低重量及耐热性等卓越性能可作为自行车、汽车、风车以及运动器械等诸多领域的优质材料。以生物质废弃物作为原材料代替传统的高成本碳纤维生产方法有利于将农业与工业生产结合于生物经济中,制造可再生产品符合绿色经济发展战略。木质素是世界上最丰富的生物聚合物之一,但其分子结构复杂且具有异质性,且作为造纸及纸浆工业的废弃物无法得到合理利用。
华中科技大学 2022-07-27
粉煤灰基免烧免蒸砖
粉煤灰基免烧免蒸砖是一种新型的建筑材料,它利用粉煤灰、电石渣、石膏等工业废弃物作为主要粉体原料,以减水剂、缓凝剂等添加剂作为辅助材料,通过一定的工艺方法进行加工制作,从而生产出具有一定强度和耐久性的砖块,以取代传统的烧制成型的砖块。这种不经高温煅烧而制造的一种新型砖类建筑材料对环境保护具有重要意义,在减少自然资源消耗的同时,有效的减少工业废弃物对环境的污染。在建筑材料市场,粉煤灰基免烧免蒸砖由于其环保特性,并且在施工过程中具有一定的便利性和经济性,从而具有较大的竞争优势。这种新型材料具有绿色环保、高强度、轻质等特点,是砖类建材领域对固体废弃物资源化利用的理想应用方向。 技术特点 环保:粉煤灰基免烧免蒸砖以粉煤灰、电石渣、石膏等工业废弃物作为主要粉体原料,可以减少对自然资源的消耗,使工业废弃物得到有效利用,有利于环境保护。 高强度:采用特定工艺进行加工处理,使得粉煤灰基免烧免蒸砖具有一定的抗压强度和耐久性,通过对工艺配比的调控,可以制备出满足不同需求的砖体,其28天强度为30-60 MPa。 轻质:相较传统的砖体材料而言,粉煤灰基免烧免蒸砖具有较轻的重量有利于施工和运输。 生产工艺简单:不需要进行复杂工业合成,只需将不同粉体进行充分混合,然后制作成型。生产设备简单易使用,可以在适当的设备条件先进行规模化量产。 安全:在实际生产操作中不需要使用高浓度氢氧化钠溶液进行活化,降低了施工人员的危险。
济南大学 2024-07-29
路桥用复合彩液基快速修复材料
本产品以复合乳液作为改性剂结合交联剂对常温基质沥青进行改性,通过优化的乳化工艺,制备了高性能、具有稳定化学网络的常温沥青复合乳液基,改变市政路面的施工方式和环境、通过提高柔性路,结构形式和强度控制手段,用于人口密集区要求严格的路桥施工,对于需要快速开放交通的市政路面具有明显优势。
南京工程学院 2021-01-12
新型粉煤灰基磁絮凝剂
高浓度污水的絮凝沉降处理中,往往会遇到泥化程度高、难以沉降的问题,将磁性力场引入絮凝工艺,可望增强絮团沉降动力,提升污水澄清效果。磁性絮凝剂是将磁种材料与絮凝剂基体复合,形成集磁性与絮凝特性与一身的复合絮凝剂,在高浓度工业污水、矿物洗选废水、生活污水的磁絮凝处理方面具有重要的应用前景。
安徽理工大学 2021-04-13
超高强度铜基复合材料
本项目通过在Cu-Cr原位复合材料中加入稀土来提高铜合金的导电率,同时还能有效提高合金的强度和抗软化温度。加入微量合金元素Zr、Ag提高合金的强度和抗软化温度。在Cu-15%Cr合金中加入微合金元素Zr的Cu-15%Cr-0.15%Zr合金,由于Zr的加入可使材料的抗拉强度提高8%左右,并减缓退火处理时强度的下降速度,即提高抗软化温度30~50℃。中间热处理温度在450℃时所得综合性能最佳,在应变量η=8.63时,形变Cu-15%Cr原位复合材料的抗拉强度可以达到995MPa,导电率为75%IACS。CuNb合金经大量拉拔变形后,形成的Nb纤维分布在Cu基体上,Cu-20%Nb(体积分数%)复合材料的抗拉强度接近2000MPa。
上海理工大学 2021-01-12
高性能纤维纸基功能材料制备技术
本技术适用于芳纶纤维、高强高模聚乙烯纤维、碳纤维、聚醚醚酮纤维、聚酰亚胺纤维等高性能化学纤维,采用湿法造纸技术,制备绝缘纸、摩擦材料等纸基功能材料和蜂窝纸等高强度结构材料等。解决了高性能纤维纸基功能材料生产中的纤维改性、分散、湿法成形和高温热压等关键技术。可提供高性能纤维纸基材料湿法连续生产线成套技术,为相关行业提供高性能纤维纸基功能材料和结构材料及其复合材料等高新技术材料产品。 关键技术 对于湿法抄造工艺来说,纤维能否均匀分散、湿法成型工艺和热压工艺是否合理是决定产品质量是否合格的重要因素。本项目成果解决了高性能纤维纸基材料生产中的纤维改性、分散、湿法成形和高温热压等关键技术。超高效碳纤维电磁屏蔽纸的制备创新地利用碳纤维、金属导电纤维这两种纤维的优势互补,保证成纸在拥有良好屏蔽效能的同时具有很好的机械性能和柔韧性。性能良好的超高分子量聚乙烯纤维纸主要是采用纤维洗涤-超声预处理-疏解分散-分散剂分散工艺,通过预处理、添加助剂、成型和增强而制得。采用聚酰亚胺纤维通过自有技术制备得到高性能的聚酰亚胺纤维绝缘纸等纸基功能材料。采用碳纤维配用聚醚醚酮纤维制备纸基摩擦材料。 知识产权及项目获奖情况 一种聚酰亚胺导电纸的制备方法 201610487328.X 一种超高分子量聚乙烯纤维纸的制备方法 201610921059.3 一种超高分子量聚乙烯纤维的预处理分散方法 201610920332.0 一种超高效碳纤维电磁屏蔽纸 201710204473.7 一种聚醚醚酮纤维纸及其制备方法 201710544478.4 一种碳纤维增强聚醚醚酮纸基摩擦材料及其制备方法 201710559878.2 项目成熟度 实验室试验和中试已完成,部分成果已经用于试生产。 投资期望及应用情况 期望在碳纤维、高强高模聚乙烯纤维、聚醚醚酮纤维技等高性能纤维共同进行技术开发或技术转让。 采用高性能纤维制备纸基功能材料和结构材料是航空航天、国防、高铁和电力电机等重要领域开发的一类产品,目前主要是日本、奥地利和美国等国家生产。 国内近年开始关注,并有少数几家开始进行,但尚只能生产少数几类低档次产品。目前已经利用本项目成果建成年产 150 吨聚酰亚胺纤维绝缘纸生产线,生产聚酰亚胺纤维绝缘纸。
江南大学 2021-04-13
低成本制备高效硅薄膜太阳电池关键技术研发
南开大学 1978 年在国内率先开展非晶硅材料及其电池的研究,该技术获得天津市技术发明二等奖。自“六五”至“九五”期间,连续 4个五年国家科技攻关计划,获科技部重点攻关和天津市科委的支持,经过 20 余年潜心研发,硅基薄膜太阳电池性能跻身世界先进行列。于 2003 实现非晶硅电池产业化。 2000 年始,在国内率先开展新一代硅薄膜电池的研究。2007 年,该成果实现技术转移生产。 2009 年,研制成功我国首套基于自主专利技术的、衬底面积0.79m2、线列式 5 室连续 VHF-PECVD 系统及相应中试生产线及其组件制造技术。成为国际上为数不多可开展大面积新一代硅基薄膜太阳 电池研究的单位。 2011 年,开发出年产能 2 兆瓦、具有自主知识产权的、我国首条年产能 2 兆瓦的非晶硅/非晶硅锗/微晶硅叠层电池生产线及其组件生产技术。生产出的太阳电池组件效率达 9.59%,将新一代硅薄膜电池技术推向产业化。
南开大学 2021-02-01
低成本制备高效硅薄膜太阳电池关键技术研发
南开大学 1978 年在国内率先开展非晶硅材料及其电池的研究,该技术获得天津市技术发明二等奖。自“六五”至“九五”期间,连续 4 个五年国家科技攻关计划,获科技部重点攻关和天津市科委的支持, 经过 20 余年潜心研发,硅基薄膜太阳电池性能跻身世界先进行列。 于 2003 实现非晶硅电池产业化。 2000 年始,在国内率先开展新一代硅薄膜电池的研究。2007 年, 该成果实现技术转移生产。 2009 年,研制成功我国首套基于自主专利技术的、衬底面积 0.79m2、线列式 5 室连续 VHF-PECVD 系统及相应中试生产线及其 组件制造技术。成为国际上为数不多可开展大面积新一代硅基薄膜太 阳电池研究的单位。 2011 年,开发出年产能 2 兆瓦、具有自主知识产权的、我国首条 年产能 2 兆瓦的非晶硅/非晶硅锗/微晶硅叠层电池生产线及其组件生 产技术。生产出的太阳电池组件效率达 9.59%,将新一代硅薄膜电池 技术推向产业化。
南开大学 2021-04-11
高效率薄膜晶硅纳米构架柔性太阳光伏项目
 高性价比太阳光伏电池技术,及其低成本规模化开发应用,是我国中长期科技发展规划中所框定的重点“能源领域”技术突破方向之一。新一代高性能柔性薄膜太阳能电池为丰富光伏器件应用和推广太阳能建筑一体化提供关键基础,而其实现的核心技术在于制备高品质、稳定且低成本的柔性薄膜材料。本项目在可规模化应用的柔性薄膜衬底上实现低温晶硅薄膜外延生长、分离转移、器件优化和先进纳米构建框架等一系列核心技术。同时,通过融合和集成先进纳米构建体系和材料性能调控,探索新一代高性价比薄膜光伏电池。
南京大学 2021-04-14
晶体硅太阳能电池产业化及应用产品开发
欧洲太阳能协会主席赫尔曼・舍尔博士日前认为,世界经济应该从依靠矿物资源向太阳资源转变,太阳型世界经济将推动第二次工业革命 。太阳能发电是一项高新技术,以太阳能为资源基础的生产将是一种可持续的发展模式从阳光直接转变成电流的太阳电池也将不再是昂贵的市场空缺。全球太阳能产品的年销售额达14亿美元,其中12亿美元来自太阳能电池的销售。太阳能工业的年增长率估计在20
西安交通大学 2021-01-12
首页 上一页 1 2
  • ...
  • 25 26 27
  • ...
  • 62 63 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1