高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
高耐蚀海工涂料用自修复聚合
物
蜡
微
粉
本项目的提出建立在申请人对国内外相关研究现状和趋势的分析及已有的工作基础上,项目的目标产品为具有自修复功能,主要应用于海洋工程高性能防腐涂层的复合聚合物蜡微粉。避免全新的分子结构的设计,将多见于树脂材料的自修复性能迁移到海洋工程等领域用的高性能防腐涂层上,再加上应用极为简单,可直接添加到涂料体系中去,在兼容市场现有涂料产品配方和涂装工艺基础上实现涂层表面自修复功能。
南京大学
2021-04-14
超
微
纳米金属间化合
物
领域最新进展
此项研究中,研究团队通过一种活化负载的方式,制得了催化剂颗粒尺度小于3nm的Pt3In有序团簇催化剂。徐虎课题组通过理论计算考虑了不同尺寸和Pt比例的金属间纳米晶体,研究表明通过往铂中掺杂铟原子,可以有效地改变了铂的电子结构,使铂对氧的吸附能力减弱,这样有利于氧还原反应。研究表明,在Pt
南方科技大学
2021-04-14
一种核壳中空结构MoO3@mSiO2
微
球
的制备方法及应用
(专利号:ZL 201310397776.7) 简介:本发明公开了一种制备MoO3@mSiO2微球的方法,属于纳米材料制备技术领域。该制备方法利用十六烷基三甲基磷钼酸铵为核,采用溶胶凝胶法包覆一层SiO2,然后煅烧得到核壳中空结构的MoO3@mSiO2微球。该MoO3@mSiO2微球分散性好,粒径200~900nm,具有核壳中空结构,核是MoO3,壳是多孔SiO2。该微球对催化乙酸和丁醇合成乙酸丁酯的酯化反应具有很好的催化效果,其在反应温
安徽工业大学
2021-01-12
一种核壳中空结构WO3@mSiO2
微
球
及其制备方法和应用
(专利号:ZL 201310428729.4) 简介:本发明公开了一种制备WO3@mSiO2微球及其制备方法和应用,属于纳米材料制备技术领域。该制备方法利用十六烷基三甲基磷钨酸铵为核,采用溶胶凝胶法包覆一层SiO2,然后煅烧得到核壳中空结构的WO3@mSiO2微球。该WO3@mSiO2微球分散性好,粒径500~600nm,具有核壳中空结构,核是WO3,壳是多孔SiO2。该微球对以油酸和甲醇为原料合成油酸甲酯(生物柴油)的酯化反应具有很好的
安徽工业大学
2021-01-12
一种还原自组装蛋白质包裹磁性
微
球
的制备方法及应用
本发明公开了一种还原自组装蛋白质包裹磁性微球的制备方法。该方法利用巯基乙醇、二硫苏糖醇或者 3-巯基-1,2-丙二醇作为还原剂,通过还原反应打开蛋白质的二硫键,使蛋白质暴露出巯基和疏水区域,与磁性纳米颗粒通过巯基配位以及疏水作用自组装形成核壳结构的蛋白质包裹磁性微球。本发明制备的蛋白质包裹微球粒径易调控,稳定性、水溶性好,不易聚集,非特异性吸附小,具有优异的生物相容性,无需使用特殊设备、耗时短、易操作、生产成本低廉,制备条件温和,在制备过程中直接固定特异性抗体,得到偶联抗体的蛋白质包裹磁性微球活性高
华中科技大学
2021-04-14
细菌DNA
硫化
修饰研究新进展
上海交通大学生命科学技术学院、微生物代谢国家重点实验室吴更教授与武汉大学王连荣、陈实教授团队合作,揭示了细菌DNA硫化修饰中催化第一步反应的半胱氨酸脱硫酶发生构象变化,使其活性位点半胱氨酸朝向底物半胱氨酸移动5.5埃以发起攻击的催化机制。最新研究成果以“Structural Analysis of an L-Cysteine Desulfurase from an Ssp DNA Phosphorothioation System”为题发表在《mBio》杂志上。刘立琼等为第一作者,吴更、王连荣为通讯作者,上海交通大学生命科学技术学院、微生物代谢国家重点实验室为第一单位。本文是团队自2018年Nature Communications上发表的细菌采用SBD结构域识别硫化修饰DNA的结构机理及2020年Nature Microbiology上发表的II型DNA硫化修饰系统的SspB、SspE晶体结构的延续和扩展。 在细菌的DNA硫化修饰(不管是早先发现的Dnd修饰系统还是新近发现的Ssp修饰系统)途径中,都由一个半胱氨酸脱硫酶催化第一步的反应,即半胱氨酸脱硫酶的活性位点半胱氨酸对底物半胱氨酸上的硫原子发起亲核攻击反应,将活化的硫原子转移到半胱氨酸脱硫酶的活性位点半胱氨酸上,以进行后续的将硫原子加进DNA的反应。2020年4月初团队在Nature Microbiology上发表的文章“SspABCD-SspE is a phosphorothioation-sensing bacterial defense system with broad antiphage activities”,从探索海洋弧菌的高频单链磷硫酰化修饰入手,通过比较基因组学和分子遗传学手段,鉴定出以SspABCD为修饰元、SspE为限制元的单链磷硫酰化限制-修饰系统。该系统与之前发现的磷硫酰化(以DndABCDE为修饰元以产生双链DNA磷硫酰化、DndFGH为限制元)的Dnd系统均迥然不同,并首次阐明了细菌磷硫酰化限制-修饰系统赋予宿主抑制噬菌体入侵的能力。同时,通过结构生物学和生物化学手段,解析了SspB蛋白的晶体结构,揭示其两个保守motif的关键残基对其DNA缺刻酶活性非常重要;解析了SspE蛋白的晶体结构,发现其N端结构域有依赖于DNA磷硫酰化修饰的NTP水解酶活性,而其C端结构域有DNA缺刻酶活性,从而阐明了该系统DNA磷硫酰化修饰与限制两部分功能耦合的分子机理。研究还发现SspABCD作为修饰蛋白在宿主基因组DNA上产生磷硫酰化修饰,SspE作为限制元能够感应基因组DNA上的磷硫酰化修饰从而区别宿主自身与外源的遗传物质,并利用其核酸酶活性对入侵噬菌体的DNA进行大范围的缺刻,从而抑制噬菌体DNA的复制。 本研究解析了新发现的II型DNA硫化修饰系统中的半胱氨酸脱硫酶SspA(来源于弧菌)与底物半胱氨酸的复合物晶体结构,分辨率为1.8埃。结构揭示SspA通过其天冬酰胺N150和精氨酸R340残基来识别底物半胱氨酸,如果将这两个残基突变则会严重破坏细菌的DNA硫化修饰。在结构中,SspA的活性位点半胱氨酸C314与底物半胱氨酸的距离长达8.9埃,这就产生了一个有趣的问题——SspA是怎么催化脱硫反应的?通过计算机分子动力学模拟,作者发现SspA的活性位点半胱氨酸C314在催化过程中向底物半胱氨酸移动了5.5埃,从而把它们之间的距离缩短到便于发生反应的范围内。本研究通过简正模式分析,发现弧菌的SspA、大肠杆菌的IscS、链霉菌的DndA(这两个都是I型DNA硫化修饰系统的)的活性位点半胱氨酸虽然处在不同的相对位置和不同的二级结构上,但都有着向各自的底物半胱氨酸的运动。 本研究进一步通过在上海光源BL19U2生物小角X射线散射(简称SAXS)线站收集的数据,从头搭建了SspA在溶液中结构的分子模型。发现SspA在溶液中的结构与分子动力学模拟后SspA的结构更为接近,它们之间的SAXS数据的χ2偏差只有1.04埃,远低于从SspA的晶体结构推算出的SAXS数据之间的χ2偏差3.70埃。这从实验上证实了前述的计算机分子动力学模拟和简正模式分析的结果。 弧菌SspA的活性位点半胱氨酸在催化过程中,活性位点半胱氨酸朝向底物半胱氨酸移动了5.5埃的距离 (A)分子动力学模拟 (B)简正模式分析 (C)小角X射线散射实验数据与晶体结构经过分子动力学模拟后的结果和晶体结构的比较 本研究通过X射线晶体结构解析、分子动力学模拟、小角X射线散射等多种研究手段的结合,揭示了细菌DNA硫化修饰这一神奇现象中催化关键的第一步半胱氨酸底物脱硫反应的酶的催化机理,解答了半胱氨酸脱硫酶家族是如何克服活性位点半胱氨酸与底物半胱氨酸之间很长的距离这一长期悬而未决的问题,使人们对于细菌DNA硫化修饰的认识和理解又前进了一步。该研究获国家自然科学基金(31872627、31670106)的支持。
上海交通大学
2021-04-11
硫化
氢气体检测管
产品详细介绍 硫化氢气体检测管 比长式气体检测管原理及使用方法原理CO、CO2、H2S、O2、SO2、NH3等检测管的基本测定原理为线性比色法,即被测气体通过检定管与指示胶发生有色反应,形成变色层(变色柱),变色层的长度与被测气体的浓度成正比。2、主要技术参数(见附表)3、附件(每盒)①胶管一段;Φ3×5,长度20cm②小砂轮一片4、贮运条件本品应避光保存于阴凉干燥处,严禁日光照射,保存温度不超过40℃,玻璃制品,小心轻放。5、使用方法各种检定管均可与气体检定管用圆筒型正压式采样器等配套使用。于测定现场用空气冲洗采样器后,取一定体积的现场空气,把检定管两端切开,用短胶管将检定管的下端(浓度标尺有“0”的一端)连接在采样器(检定器)的出气口上,按规定时间匀速通过检定管,然后按检定管变色柱(或变色环)上端指示的数字,直接读取被测气体的百分浓度。 各种气体检测管主要技术参数表
北京华博科技制造有限公司
2021-08-23
28007三
球
仪
宁波浪力仪器有限公司(余姚市朗海科教仪器厂)
2021-08-23
人体感应辉光
球
φ200mm×300mm,管内稀薄气体放电。
宁波华茂文教股份有限公司
2021-08-23
28007三
球
仪
宁波华茂文教股份有限公司
2021-08-23
首页
上一页
1
2
...
11
12
13
...
187
188
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果