高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
碳硫联测钢铁元素
产品详细介绍碳硫主要技术指标:测量范围:碳:0.02%~6.00%  硫:0.002%~2.00%测量时间:约45秒测量精度:符合GB/T223.69-97 GB/T223.68-97标准元素分析主要技术指标:分析方法:光电比色分析法量程范围:吸光度值0~1.999A、浓度值0~99.99%测量精度:符合GB223.3-5.88标准可测元素:锰、磷、硅、镍、钼、铬、钛、铜、铅、锌、铁、铝、镁、稀土、铌、钒等元素的分析电源电压:220v±10%  50Hz 碳硫主要特点:气体容量法差压式定碳、碘量法定硫;单片机控制电路,工作过程全自动操作、彻底消除人为误差、性能稳定可靠;进口精密传感器检测数据,测量准确,自动打印测量结果。启动一次完成碳硫全部测定。操作简单、维修方便。元素分析主要特点:零点、满度均可自动跟踪,无需准确调整,直读吸光度或百分比含量,自动打印结果,包括炉号、日期、浓度百分含量;采用单片机控制电路,可储存15条曲线;采用精密触摸式键盘,32键音响提示,操作简单、适用、稳定性好;更换不同的冷光源或滤光片,可扩大测量元素的种类和含量范围;采用先进的光电转换技术,适用于各种金属材料化验。金牛仪器服务承诺:1、所售化验仪器三包一年,终身服务,产品售后服务热线电话24小时开通,定期回访客户; 2、免费为客户安装、调试、代办托运化验仪器 ;3、免费培训化验人员,现场培训或来公司培训均可;4、提供材料分析工艺,代办化验仪器配套理化检测设备和配件;协助筹建化验室 5、常年提供化验仪器所需各种配件(特制硅钼粉、纯锡粒、各种标准物质、玻璃器皿、分析天平、添加剂等仪器所需的各种配件)。http://www.jnfxyq.com
南京金牛高速分析仪器有限公司 2021-08-23
小型真空碳管炉
产品详细介绍 小型真空碳管炉  产品编号:52310445116  ◎产品说明  设备技术:  本电炉为周期作业式,广泛用于功能陶瓷、光学材料、碳复合材料、硬质合金、粉末治金等高温下进行烧结处理,也可在充气保护下成型烧结。  技术参数:  1、型号:ZT-18-22  2、额定功率:18KW  3、额定温度:2200℃  仪表控温精度:正负1℃  5、控温方式:钨铼热电偶+红外衣  工作区尺寸:直径80x100mm  7、冷态极限真空度:5x10-3 Pa  8、压升率:2Pa/h  9、电源电压:380V 50Hz 单相  10、充气压力:<0.03Mpa(可充氮气、氩气)  11、发热元件:石墨管(高纯石墨)  结构与说明:  1、炉体:采用双层水夹层结构,"内层为不锈钢(1Gr18N9Ti)抛光。上、下法兰组焊筒形结构,法兰平面开设封闭槽。采用“0”圈真空密封,并设有水冷装置(防止因温度过高“0”圈老化)。开设有抽气、热电偶、红外仪等。  2、炉盖:采用双层水夹层封头结构,设有观察窗,屏蔽锁紧、开启装置,并通水冷。  3、炉底:采用双层水夹层封头结构,设有电极引出装置,支撑平台等,并设有水冷装置。  4、炉架:山型钢及钢板组焊成箱式结构,炉体安装放在箱体内,美观大方。  5、真空系统:又一台K-100扩散泵配冷阱,一台2XZ-8D直联泵、手动高真空蝶阀、真空压力表(Pa)、充气阀、放气阀和真空管路等组成,扩散泵采用金属波纹软管快速接头联接(减缓震动),真空度的测量采用数显复合真空计。  6、控制系统PLC控制:控制系统是由我公司自行开发人机对话操软件,画面显示友好,操作简单,要以炉内工况进行实时监测,软件彩色模拟屏显示,加热升温显示及真空阀门的控制都集成到电脑上操作,现场也可以手动操作,需要电脑操作时,直联由232接口连接到笔记本电脑上启动软件,可检测到各种状态,也可通过485通讯连接到办公室操作,本设备可采纳温度、真空度曲线和烧结时间,方便用户根据历史曲线分析烧结工艺。控温方式为1300℃以下热电偶升温。1000℃-2200℃红外仪表自动控制。压力控制可采用手动及自动方式。控制系统上设有过流、超温及断水等分类报警功能。  7、气路系统:整个系统中设有1个j进气口、1个放气口、可冲气氛。  8、电气控制:采用各种管道阀等相关装置组成,具有断水声光报警自动切断电源能。  9、变压器及连接电缆:采用与之相匹配的变压器及连接电缆。  10、发热元件及隔热屏:发热元件采用高纯石墨加工成圆筒形结构,隔热屏采用石墨复合材料、碳毡、石墨毡,保温性能好、加热均匀、辐射面大、耐冲击性好,可快速加热和冷却。保温层和发热分体,易维护和取装,保温套外用不锈钢框架支撑,固定。 
上海晨鑫电炉有限公司 2021-08-23
一种快速成形自动铺粉机构及自动铺粉烧结方法
本发明公开了一种快速成形自动铺粉机构,包括成形腔体,所 述成形腔体内设置有成形工作台及安装在成形工作台上的动力装置, 动力装置上连接有由其驱动移动的刮刀,所述动力装置上连接有管道, 所述管道穿过成形腔体后连接有动力泵,所述动力装置为气缸或液压 缸。本发明受温度、粉尘影响较小,采用流体作为动力传输介质,而 且本铺粉机构工作时只有动力装置处于环境较差的成形腔体内,所以 成形腔体内的高温环境和粉末的挥发与飞溅对铺粉机构的影响较小; 本发明可靠性高:因为采用流体传动后,铺粉机构的结构简单,而且 还具有了耐高温、防粉尘和过载保护的能力,所以铺粉机构的可靠性 得到了很大的提高。
华中科技大学 2021-04-13
《科技支撑引领青海碳达峰碳中和实施方案》印发实施
《实施方案》以贯彻落实习近平总书记视察青海时提出的“青海要在实现碳达峰碳中和方面先行先试,为全国能源结构转型、降碳减排作出更大贡献”重大要求和党的二十大精神、省第十四次党代会精神为指导,以经济社会发展全面绿色转型为引领,以产业结构和能源结构调整为关键,构建符合青海省省情定位的绿色低碳技术创新体系,支撑青海省实现碳达峰碳中和目标。
青海省科技厅 2023-02-09
能源消费与碳排放现状、预测及低碳发展路径选择研究
北京工业大学 2021-04-14
用于铝及铝合金的含钒细化剂及其制备方法
用于铝及铝合金的含钒细化剂,根据是否含碳或/和氮,有三种类型:1.铝1~99%,钒0.7~82.5%,碳0.1~17.0%;2.铝1~99%,钒0.7~81%,氮0.1~21.5%;3.铝1~98%,钒0.7~83%,氮0.1~20%,碳0.1~18%。上述含钒细化剂的制备方法有五种,第一种和第三种制备方法的工艺步骤:(1)配料,(2)混合与成型,(3)烧结。第二种制备方法的工艺步骤:(1)配料,(2)铝或铝合金熔化,(3)浇铸凝固。第四种和第五制备方法的工艺步骤:(1)配料,(2)混合与成型,(3)自蔓延合成。
四川大学 2021-04-11
一种基于氮化钛的新型纳米结构光阴极
发明公开了一种基于氮化钛材料的新型纳米结构光阴极;所述氮化钛光阴极包括衬底、氮化钛纳米结构层;还涉及了该型氮化钛光阴极的制备方法,及其电场辅助型光阴极测试装置,所述电场辅助型光阴极包括绝缘垫片、金属薄板阳极、上/下电极导线、外加偏压电源。本设计中核心的氮化钛纳米结构具有表面等离激元共振效应,会带来光子吸收增强和局域电场增强,且材料功函数仅约为3.7eV和导电性优良,有助于光致电子的发射;通过设计氮化钛结构的组成纳米图形和结构参数,可获得与入射激励光波相匹配的等离激元共振,实现可光调控的电子发射。因所述氮化钛材料还具有稳定的物化性质,从而本发明提供了一种可作为稳定、高效率的光阴极。
东南大学 2021-04-11
燃烧合成氮化硅基陶瓷的产业化技术
在高技术陶瓷领域,先进陶瓷占有极其重要的地位,在诸多的先进陶瓷中,氮化硅基先进陶瓷以其高强度、高韧性、高的抗热震性、高的化学稳定性在先进陶瓷中占有独特的地位,是公认的未来陶瓷发动机中最重要的侯选材料。并且在国际上氮化硅陶瓷刀具和氮化硅基陶瓷轴承已经形成相当规模的产业。任何一个跨国刀具公司都有氮化硅基陶瓷刀具的系列产品,足见其在机加工行业中具有不可替代的地位。 但是,影响氮化硅陶瓷推广的一个主要因素,是氮化硅粉末价格昂贵,这是由于传统的制取氮化硅粉末的方法耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新的燃烧合成技术,制取氮化硅陶瓷粉末和氮化硅复合粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的应用前景。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1990年以来,本项目负责人等针对燃烧合成氮化硅陶瓷产业化的一系列关键问题,在气-固体系氮化硅基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 采用本项目的技术,可以生产符合制作先进陶瓷要求的从全α-Si3N4相到高β- Si3N4相,及不同配比的氮化硅粉末,还可根据用户要求,用此技术生产α-Sialon,β-Sialon和其它各种氮化硅基的复合粉末。粉末的质量优良而稳定。 应用于航天、航空及机械行业等,用于制作氮化硅陶瓷刀具、氮化硅基陶瓷轴承、耐磨耐腐陶瓷涂料等。
北京科技大学 2021-04-11
燃烧合成氮化铝基先进陶瓷的产业化技术
氮化铝(AlN)陶瓷具备优异的综合性能,是近年来受到广泛关注的新一代先进陶瓷,在多方面都有广泛的应用前景。例如高温结构材料、金属溶液槽和电解槽衬里,熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料等。尤其因其导热性能良好,并且具备低的电导率和介电损耗,使之成为高密度集成电路基板和封装的理想候选材料,同时氮化铝—聚合物复合材料也可用作电子器材的封装材料、粘结剂、散热片等。氮化铝在微电子领域应用的市场潜力极其巨大。氮化铝还是导电烧舟的主要成分之一,导电烧舟大量地用于喷涂电视机的显象管等器件、超级市场许多商品包装用的涂铝薄膜,有着广泛的市场。但是,影响氮化铝基陶瓷的推广的主要因素之一,是采用传统方法合成氮化铝粉末,耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新技术,采用燃烧合成技术制取优质的氮化铝陶瓷粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的推广价值。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1994年以来,本项目负责人等针对燃烧合成氮化铝陶瓷产业化的一系列关键问题,在气-固体系氮化铝基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 本项目来源于国家教委高校博士点专项科研基金项目(1994.3-1997.3)。 本项目以应用基础研究成果“燃烧合成氮化铝基陶瓷的应用基础研究”已于1999年通过专家函审。 采用本项目的技术,可以生产符合制作先进陶瓷要求的氮化铝粉末,还可根据用户要求,用此技术生产氮化铝基陶瓷粉末。粉末的质量优良而稳定。 氮化铝广泛应用于高温结构材料、金属溶液槽和电解槽衬里、熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料、高密度集成电路基板、电子器材的封装材料、粘结剂、散热片、导电烧舟等。
北京科技大学 2021-04-11
面向 5G 通信基站用氮化镓基射频器件
(一)项目背景 当前以硅、砷化镓为代表的第一和二代半导体接近其物理极限,以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。氮化镓(GaN)特别适合制作高频、高效、高温、高压的大功率微波器件,是下一代通信、雷达、制导等电子装备向更大功率、更高频率、更小体积和抗恶劣环境(高温抗辐照)方向发展的关键技术。 目前氮化镓基射频器件已接近于商用,需解决从走出实验室到小量中试的最后“1 公里”,重点攻克其在可靠性工艺和量产稳定性的瓶颈。 以氮化镓、碳化硅为代表的第三代半导体是当前国际竞争热点,也是我国发展自主核心半导体产业、实现换道超车的难得机遇。 半导体作为信息时代的“粮食”,将成为 5G 基建、特高压、城际高铁和城际轨道交通、新能源汽车充电桩、大数据中心、人工智能、工业互联网等“新基建”七大领域发展的支柱性产业。而氮化镓为代表的宽禁带半导体先进电子器件,凭借其高效、高压、高温等优势,将在“新基建”中大放异彩,可以弥补传统半导体器件的技术瓶颈,满足更高性能器件要求。 (二)项目简介 5G 要求更高的数据传输速率,发射机的效率会出现指数级的下降。这种下降可以使用包络跟踪技术来修复,该技术已经在较新的 4G/LTE 基站以及蜂窝电话中采用。基站中的包络跟踪需要高速,高功率和高电压,这些只有使用 GaN 技术才能实现。诸如 GaN 助力运营商和基站 OEM 等实现了 5Gsub-6-GHz 和 mmWave 大规模 MIMO 的目标。 GaN 可以说为 5Gsub-6-GHz 大规模 MIMO 基站应用提供了众多优势:1、在 3.5GHz 及以上频率下表现良好,对比其他产品优势明显。2、GaN 的特性能转化为高输出功率,宽带宽和高效率。采用 DohertyPA 配置的 GaN 在 100W 输出功率下的平均效率达到 50%至 60%,明显降低了发射功耗。3、在高频和宽带宽下的效率意味着大规模 MIMO 系统可以更紧凑。4、可在较高的工作温度下可靠运行,这意味着它可以使用更小的散热器。 根据 Strategy Analytics 的数据,预计 5G 移动连接将从 2019 年的 500 万增长到 2023 年的近 6 亿。所以需求还将不断上涨。 根据Strategy Analytics的数据,预计5G移动连接将从2019年的500万增长到2023年的近6亿。所以需求还将不断上涨。 Efficient Power Conversion 的首席执行官兼联合创始人Alex Lidow 讨论5G时也说道:“基站中的包络跟踪需要高速,高功率和高电压,这些只有使用GaN技术才能实现。根据Yole Development公司发布的2018年度报告数据显示,随着全球整体数据流量的激增,我国5G产业将迎来大规模的需求增长。预计到2022年,我国5G基站规模将达到千亿市场,5G基站数量将达百万个。所以未来氮化镓基射频器件是5G通信基站收发端的核心。 氮化镓基射频器件是华为和中兴发展 5G 通信产业的核心器件,西安电子科技大学氮化镓射频器件研究团队自 2016 年起就与华为西安研究所、中兴西安研究所等国内主流5G通信公司协同攻关开展氮化镓基射频器件的研究,目前承担的流片服务项目合计约 500 万元。 2017 年,西安电子科技大学与西安市高新区、西电电气集团等联合成立“陕西半导体先导技术中心”,中心致力于推动陕西第三代半导体产业发展,促进以氮化镓为代表的射频器件、功率器件等加速产业化,2019 年团队向陕西半导体先导技术中心转让专利 35 项,作价 2000 万元,双方正在联合推进搭建第三代半导体中试平台,平台将会立足西安,服务全国,提升氮化镓基射频器件量产工艺可靠性,实现相关技术成果转化。 (三)关键技术 本项目由西安电子科技大学作为技术攻关的主要单位,制定技术路线,保障国家重大科技专项“高效 GaN 微波功率器件及可靠性研究”和“5G 移动通信 GaN 芯片可靠性机理研究”研究,与华为和中兴联合开展工程合作项目实施,加快解决器件工艺可靠性工程问题,重点开展氮化镓微波功率与太赫兹器件工程技术研究,突破高性能低缺陷外延材料生长、高效率高可靠氮化镓微波功率器件工艺技术等关键瓶颈问题,协助规模量产高效率 S-Ku 波段典型氮化镓功率器件和模块、5G 基站核心射频模块。
西安电子科技大学 2023-07-12
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 139 140 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1