高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
新型光催化剂、长余辉粉及其复合材料的开发制备
开发了一系列高活性的光催化材料:TiO2 纳米管负载Au, 石墨烯/暴露{001}面的TiO2 纳米复合光催化材料, 石墨烯/棒状TiO2纳米复合光催化材料, Ag3PO4/还原的氧化石墨烯片(RGOs)纳米复合材料,用于可见光催化的(Mo,C)/(B,N)共掺杂锐钛矿相TiO2纳米颗粒光催化材料,微量磷酸银敏化二氧化钛光催化剂,B、N掺杂石墨烯/ TiO
兰州大学 2021-04-14
一种基于化学和物理交联的双网络纤维素凝胶系材料
本发明公开了一种基于化学和物理交联的双网络纤维素凝胶系材料,该材料包括水凝胶、气凝胶和 生物塑料。在纤维素溶液中加入定量的交联剂并搅拌后先形成部分化学交联的纤维素凝胶,然后将该凝 胶置于纤维素的非溶剂中进行物理交联,经过水洗后得到双网络纤维素水凝胶。由双网络纤维素水凝胶 干燥制备双网络纤维素气凝胶;将双网络纤维素气凝胶在 150?oC 以上热处理后得到碳气凝胶;将双网 络纤维素水凝胶或气凝胶热压制备双网络纤维素生物塑料。本发明制备的双网络纤维素材料具有优良的 力学性能、高的比表面
武汉大学 2021-04-14
纤维化扩展中旁张力信号介导的肌成纤维细胞和纤维细胞通讯
《美国国家科学院院刊》( PNAS)在线发表了清华大学医学院生物医学工程系和清华-北大生命联合中心杜亚楠教授研究组题为“纤维化扩展中旁张力信号介导的肌成纤维细胞和纤维细胞通讯”(Matrix-transmitted paratensile signaling enables myofibroblast-fibroblast crosstalk in fibrosis expansion)的研究长文。该研究应用单细胞力学刺激和体外仿生模型结合数学模型计算,系统探究了基质材料介导的力学信号在细胞间通讯的时空作用模式、分子基础,及其在纤维化发展蔓延过程中的作用,为细胞间力学信号介导的成纤维细胞(FB)-肌成纤维细胞(MF)互作提供了直接证据,并将这种纤维化发展进程中基质纤维介导的新型细胞间通讯模式命名为 “旁张力信号”(Paratensile signaling)。组织器官在受到损伤之后,会发生损伤修复,诱发组织纤维化。如果没有有效的控制措施,慢性纤维化疾病会最终导致组织硬化,诱发器官衰竭。有研究表明,在现代社会死亡病例中有将近50%与组织器官的慢性纤维化相关,包括此次新冠肺炎,会伴有肺部纤维化,重症患者纤维化进一步蔓延可导致呼吸衰竭,肺部纤维化也是愈后后遗症的重要风险因素之一。成纤维细胞的持续激活是各类组织纤维化中的主要诱因,在组织器官受到损伤或病毒感染之后,组织内的成纤维细胞FB会受到“旁分泌因子”(paracrine factors),例如TGF-b,PDGF等诱导,激活分化成为肌成纤维细胞MF,并分泌大量的细胞因子及细胞外基质,造成更广泛的成纤维细胞激活和组织硬化,进而引起组织器官内纤维化区域蔓延。除了感知化学信号,部分研究显示体外细胞会导致细胞外基质生物化学及生物物理性质的改变,也有研究表明细胞能够感受细胞外基质的物理特性,比如硬度、粘弹性等并作出响应。2017年,杜亚楠课题组发表于《自然·材料》的研究发现,在肝脏纤维化早期,肝窦内皮细胞可通过胶原纤维束传递力学信号激活星型细胞,导致肝脏纤维化蔓延。但是到目前为止,纤维化进展过程中细胞外基质材料介导的细胞间力学通讯的模式是否保守,以及其在组织器官内的蔓延模式、相关分子机制尚不明确。图1 组织纤维化扩展中旁张力信号介导的细胞间机械通讯示意图旁张力信号包含三个过程,一、力学信号的产生;二、力学信号在细胞外基质传递;三、周围细胞接受力学信号刺激作出响应。此过程介导了纤维化区域在组织内的扩张蔓延。研究团队首先在单细胞和多细胞水平上,通过统计FB和MF细胞收缩力和互作结果,显示细胞间存在基于胶原纤维化介质的细胞间通讯。为了进一步证明细胞间的机械通讯行为,团队建立了基于原子力显微镜可通过胶原纤维对单细胞施加可控、细胞级别力刺激的研究平台,利用该平台尽可能去除旁分泌等化学信号对细胞造成的影响。团队研究了来源于不同组织(肝脏、心脏和皮肤)的成纤维细胞对于旁张力信号的响应模式,即旁张力信号作用机制的三个过程:力的产生-力学信号在细胞外基质传递-临近细胞感受力学信号作出响应;研究发现距离施力细胞70微米 之外的细胞能在1秒之内对旁张力信号作出响应,并且初步证明细胞表面胶原蛋白受体Integrin/DDR2和机械力敏感钙离子通道Pizeo1介导了细胞间力学信号向细胞内生物化学信号的转变。 基于实验现象,团队进一步建立了基于单纯旁张力的数学模拟计算方法(Fibroblast - Myofibroblast Populated Collagen Lattice model, FMPCL),利用该数学模型可重现体外实验结果,包括细胞力产生、胶原纤维束的聚集及旁张力信号介导的成纤维细胞的激活,同时可预测在单细胞、多细胞水平下细胞间作用距离对于细胞激活的程度。在细胞水平研究的基础上,进一步结合微加工技术、组织工程手段和报告基因系统,分别构建了可模拟纤维化蔓延界面的体外纤维化灶扩展( fibrotic foci expansion)模型和可模拟心脏纤维化扩展的体外仿生模型,并结合数学仿真,发现在纤维化组织和正常组织交界面(border zone)存在广泛的MF-BF细胞间旁张力通讯,导致界面不断扩展、纤维化区域蔓延。使用激光切割技术切断介质胶原纤维束,能够显著的阻断纤维化区域的蔓延。同样,阻断细胞间旁张力通讯能够抑制体外仿生模型中心脏纤维化的蔓延,证明了旁张力信号在组织纤维化扩展蔓延中不可或缺的作用(图2)。图2 纤维化蔓延界面和心脏纤维化仿生体外组织模型和数学模型在纤维化蔓延界面体外(A)和数学模拟(B)仿生模型中,在未干预的情况下,纤维化区域呈现显著蔓延并伴随着成纤维细胞的激活。通过显微切割技术切断纤维化界面的胶原纤维阻断旁张力信号,纤维化蔓延趋势得到显著抑制。同样在模拟心脏心室壁的组织纤维化模型和数学模拟模型中(C),在未干预情况下均出现显著纤维化蔓延,但是经过小分子BAPN处理抑制胶原纤维重塑,纤维化区域的蔓延得到抑制。该研究为细胞外基质材料介导的细胞间机械通讯提供了直接证据,“旁张力”细胞间通讯模式是对现有基于生化因子的“旁分泌”信号机制的重要补充(见视频),为纤维化病理研究提供了新视角,为临床干预纤维化疾病提供了新思路。清华大学医学院生物医学工程系教授、北大-清华生命联合中心研究员杜亚楠为本论文通讯作者,杜亚楠研究组已毕业博士刘龙伟、硕士于鸿升为本文的共同第一作者。杜亚楠课题组已毕业博士赵辉、鄢晓君,在读博士生龙艺、吴钊钊、尤志峰、周律等对此项工作有重要贡献。该研究得到了北京市自然科学基金、北京市自然科学技术委员会和国家自然科学基金的资助。文章链接:https://www.pnas.org/content/early/2020/04/30/1910650117?from=groupmessage&isappinstalled=0
清华大学 2021-04-11
双催化活性的锂空气电池催化剂
包括:简单背景、关键技术名称概念解释、技术原理简介、关键技术路线、技术先进性、技术特点或创新点、技术或产品应用领域等。传统能源,尤其是化石燃的消耗过程中排放的二氧化碳及其他有毒气体对全球环境的变化具有直接的影响。据预测截止 2050 年能源需求量会是现在的两倍,而到本世纪末会增至三倍。电动交通工具和大规模的再生能源(如风能和太阳能等)的开发利用将成为应对全球环境变化、能源安全和可持续性的重要策略。高能量密度、简便、可靠的电化学能量存储技术是传统能源系统向清洁能源系统、内燃机动力系统向电
南京工业大学 2021-04-14
一种催化转化催化剂的再生方法
本发明公开了一种催化转化催化剂的再生方法。从反应器中移出的催化剂首先进入第一再生器中通过第一再生气进行吹扫再生。第一再生器出口的一级再生剂输送至催化剂流量分配器后分为两股物流分别进入第二再生器和反应器,进入反应器的一级再生剂流股的流量占流股中一级再生剂总流量的1-100%,部分一级再生剂进入第二再生器中通过第二再生气进行二次再生后得到的二级再生剂与一级再生剂流股合并后一同进入反应器。本发明可以有效提高现有反应器产能,避免催化剂的频繁烧炭再生并降低再生温度与温升,有利于延长催化剂总寿命,并且能够实现不同移动床反应器中催化剂流速的单独调控,可用于甲醇制丙烯的工业生产中。
浙江大学 2021-04-13
金属催化亚胺与一氧化碳共聚法合成多肽类材料
成果与项目的背景及主要用途 一种在金属催化下亚胺与一氧化碳共聚合成多肽类聚合物材料的新的、简捷的方法,不用氨基酸为原料,以廉价的亚胺和一氧化碳为单体,在金属催化下发生交替共聚,直接生成多肽,从而使合成多肽的成本大大降低。这一途径将可以避免繁杂的合成和活化氨基酸的步骤,使得多肽的合成和传统的方法(如开环聚合反应法)相比,被大大地简化。所得到的多肽类材料,在生物医学材料和制药等领域具有重要用途。 技术原理与工艺流程简介
南开大学 2021-04-14
金属催化亚胺与一氧化碳共聚法合成多肽类材料
一种在金属催化下亚胺与一氧化碳共聚合成多肽类聚合物材料的新的、简捷的方法,不用氨基酸为原料,以廉价的亚胺和一氧化碳为单体,在金属催化下发生交替共聚,直接生成多肽,从而使合成多肽的成本大大降低。这一途径将可以避免繁杂的合成和活化氨基酸的步骤,使得多肽的合成和传统的方法(如开环聚合反应法)相比,被大大地简化。所得到的多肽类材料,在生物医学材料和制药等领域具有重要用途。 该方法是在高压釜中,以 1,4-二氧六环为溶剂,在 800psi 压力的 CO、50℃油浴以及在催化剂作用下,亚胺与 CO 共聚得到产物多肽。采用一种简单的金属钴化合物作催化剂,能有效地催化亚胺和一氧化碳的交替共聚,得到高分子量和低分散度的多肽类聚合物。方法简捷。 已取得的知识产权: 本项目得到国家自然科学基金资助,是一项具有原始创新性的科研 成 果 , 已 申 请 2 项 中 国 专 利 ( 申 请 号 200610129890.1 ,200710195204.5)和国际专利(申请号 PCT/CN2007/003465),还将对后续发现及时申请专利保护,因此将拥有该技术的全部知识产权。成果发表在化学刊物 Angew.Chem.,已受到学术界和一些国外公司的关注。 应用前景分析及效益预测: 应用行业:生物医学材料、制药、功能材料。该项目所提供的新型多肽类化合物,已经能够为生物医学工程领域提供一类新的重要的可供选择的材料。从长远来看,开发出多个新的有效的催化剂体系,实现更多类亚胺与一氧化碳的共聚,最终使该方法成为一种广泛有效的多肽的合成方法,将具有重大的社会和经济效益。 应用领域及能为产业解决的关键技术: 作为新的生物医学材料可能具有更好的生物兼容性,因而代替现有材料用于人工血管等方面。此外,还可被用作药物的糖衣以及具有药物缓释等功能。如能实现一般肽类的合成,其低廉的成本将有潜力替代用任何其它合成方法得到的该类产品。不用氨基酸为原料,而是以廉价的亚胺和一氧化碳为单体,从而使合成多肽的成本大大降低、方法大大简化。 技术产业化条件: 投资规模约 500 万元(不含基建投入)。
南开大学 2021-04-13
固氮催化剂
元素是构成生物的最主要元素之一。尽管大气中氮气的含量高达78[%],但是氮气的活化十分困难。目前工业上广泛采用Haber�Bosch法将氮气还原成氨气,然而这一过程需要在高温高压下进行,因此能耗高。据统计,每年用于合成氨的能耗超过全球年能耗的1[%]。光/电催化固氮是合成氨的一种新途径,能够在常温常压下实现氮气的还原,因此引起了广泛关注。核心问题就是寻找和设计高效、稳定、低廉的催化剂。目前,高效的固氮催化剂主要是基于过渡金属(TM)化合物,而关于非金属催化剂的报道很少。这是由于过渡金属中空的d轨道和占据d电子的共存,既能够容纳氮气分子中N原子的孤电子对,又能够提供电子到氮气分子的反键轨道,从而活化N≡N三键、增强N‒TM键。通过分析硼原子的核外电子结构,王金兰教授团队发现sp3杂化的硼原子与过渡金属类似,也同时具有空轨道和占据轨道,因此有望用于氮气的活化与还原。通过结构、性能等多方面的分析,他们最终选择g-C3N4作为衬底来负载sp3­杂化的硼原子,设计了首个不含金属的单原子催化剂,B/g-C3N4。理论计算表明,B/g-C3N4可以在极低的起始电位(0.20 V)下,通过酶促机理有效地将氮气还原为氨气。此外,硼的修饰可以显著增强g-C3N4的可见光吸收,因此有望实现太阳能驱动的固氮反应。此外,该催化剂也具有很大的合成前景以及极高的稳定性。
东南大学 2021-04-11
仿生催化氧化技术
以酶类结构的金属卟啉为催化剂,模仿生物氧化历程,突破温和条件下高效、专一活化氧气的技术难 题,实现高附加值含氧有机化物的合成,并致力于实现该技术的工业应用,填补国内外技术空白,从本质 上解决化工领域氧化过程的安全隐患。
中山大学 2021-04-10
尾气催化器
山东宇洋汽车尾气净化装置有限公司 2021-08-27
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 265 266 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1