高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
ZT-A01砂石含水率监测仪器系统
本产品是由中山艾尚智同信息科技有限公司和中山市武汉理工大学先进工程技术研究院联合开发的,主要用于解决混凝土生产中砂、石含水率无法精准、实时、连续监测(本产品监测精度可达99.4%)的问题,其基本原理是利用水与其它材料的介电常数差,采用反射微波法来实现集料含水率在线监测。 得益于更科学的分析算法和产品设计,相较于市面上出现的各种原理的含水率检测设备,本产品具有测试精度更高、稳定性更好、耐用性更持久、使用更便捷、服务更周到等优势。
中山艾尚智同信息科技有限公司 2021-11-01
压差法气体渗透仪(气体透过率测试仪)
产品详细介绍压差法气体渗透仪适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片、橡胶、渗透膜等材料在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。压差法气体渗透仪符合GB 1038、ASTM D1434、ISO 2556、ISO 15105-2等多种标准。压差法气体渗透仪(VAC-V2)具有以下特点:测定试验气体透过率、溶解度、扩散与渗透系数;三腔独立测试,恒温控制,可选湿度控制;任意温度下的数据拟合功能;可扩展有毒、易爆等危险气体的试验;压差法气体渗透仪测试原理:将预先处理好的试样放置在上下测试腔之间,夹紧,首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空,当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调),这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。压差法气体渗透仪技术指标:测试范围: 0.05 ~ 50,000 cm3/m2·24h·0.1MPa(常规)                      上限不小于500,000 cm3/m2·24h·0.1MPa(扩展体积)                      注:常规和扩展体积通过体积填块来选择 控温范围:5℃~95℃控温精度:±0.1℃ 控湿范围:0%RH、2%RH~98.5%、100%RH(湿度发生装置另购)控湿精度:±1%RH真空精度:0.1Pa 测试腔真空度:<20Pa试样尺寸:Φ97mm试样数量:3 件(数据各自独立)透过面积:38.48cm2试验气体:O2、N2、CO2 等气体(气源用户自备)了解详情请致电:济南兰光0531-85068566 Labthink兰光产品:1. 透氧仪 2. 气体透过率测定仪 3. 透气性测试仪 4. 透湿仪 5. 透湿性测试仪 6. 密封试验仪 7. 落镖冲击试验仪 8. 密封仪 9. 泄漏与密封强度测试仪 10. 氧气透过率测试仪 11. 热封仪 12. 氧气透过率测定仪 13. 水蒸气透过率测定仪 14. 薄膜拉力机 15. 摩擦系数仪 16. 初粘性测试仪 17. 智能电子拉力试验机 18. 撕裂度仪 19. 热缩试验仪 20. 电子剥离试验机 21. 揉搓试验仪 22. 瓶盖扭矩仪 23. 顶空分析仪 24. 磨擦试验机 25. 热封试验仪 26. 摆锤冲击试验仪 27. 墨层结合牢度试验机 28. 持粘性测试仪 29. 薄膜测厚仪 30. 雾化测试仪 31. 摩擦系数测试仪 32. 纸箱抗压试验机 33. 气相色谱仪 34. 摩擦系数测定仪 35. 透气度测试仪 36. 测厚仪 37. 摩擦系数试验仪
济南兰光机电技术有限公司 2021-08-23
一种模拟人眼对光环境感知的光学测量系统与测量方法
本发明公开了一种模拟人眼对光环境感知的光学测量系统,利用多种光学测量仪器以及相应的软件处理系统实现人眼对光环境感知的模拟。光学测量仪器包括平面亮度计、光谱仪和动态响应测试仪。本发明还公开了一种模拟人眼对光环境感知的光学测量方法,该光学测量系统亮度测量部分通过平面亮度计获取空间亮度分布,利用该亮度分布计算出当前条件下的瞳孔直径,进而计算出人眼感知到的空间亮度;通过调整光谱仪的测量视角获取人眼视野范围内接收到的光谱辐照度;通过动态响应测试仪测量动态响应信息。本发明提出模拟人眼对光环境感知的测量方法,该方法可对人眼感知空间光环境的特性进行全方位、实时的评价。
东南大学 2021-04-11
多模式激光跟踪测量技术及应用
随着现代激光技术的快速发展,激光跟踪在空间光通信、激光雷达、卫星遥感、定向能应用及工业测量等领域得到了广泛的应用,光束偏转原理、跟踪机构及其控制方法等是影响跟踪范围、精度、实时性和稳定性等光电跟踪性能的决定因素。在国家自然科学基金的支持下,由同济大学牵头,联合中国科学院上海光学精密机械研究所以及上海同新机电控制技术有限公司等单位开展了面向机器人误差测量等工业应用的多模式激光跟踪仪的研究。该研究对复杂场合下时变轨迹跟踪、测量或加工具有强适应性;结合图像采集系统,可以精确调整成像视轴以实现视觉导引或大范围高精度图像拼接。该项目从原理上拓展了激光多模式、变尺度跟踪的实现方法,形成了复杂场合下大范围高精度动态目标激光跟踪的核心技术,在机器人动态误差测量、动态成像检测、空间激光通信以及军事侦察等领域具有广泛的应用前景。
同济大学 2021-02-01
多模式激光跟踪测量技术及应用
项目成果/简介:随着现代激光技术的快速发展,激光跟踪在空间光通信、激光雷达、卫星遥感、定向能应用及工业测量等领域得到了广泛的应用,光束偏转原理、跟踪机构及其控制方法等是影响跟踪范围、精度、实时性和稳定性等光电跟踪性能的决定因素。在国家自然科学基金的支持下,由同济大学牵头,联合中国科学院上海光学精密机械研究所以及上海同新机电控制技术有限公司等单位开展了面向机器人误差测量等工业应用的多模式激光跟踪仪的研究。该研究对复杂场合下时变轨迹跟踪、测量或加工具有强适应性;结合图像采集系统,可以精确调整成像视轴以实现视觉导引或大范围高精度图像拼接。该项目从原理上拓展了激光多模式、变尺度跟踪的实现方法,形成了复杂场合下大范围高精度动态目标激光跟踪的核心技术,在机器人动态误差测量、动态成像检测、空间激光通信以及军事侦察等领域具有广泛的应用前景。应用范围:该项目经过几年培育,截至2018年6月已生产多模式激光跟踪系统样机5台套,主要应用于中国科学院空间激光信息传输与探测技术重点实验室、同济大学机械工程综合实验中心等单位。 在自由空间激光通信、激光雷达、光纤光开关、激光指示器等领域中,可用于激光光束的转向及指向稳定调整。在空间观测、侦察监视、红外对抗、搜索营救、显微观察、干涉测量、机器视觉等领域中,可用于改变成像视轴,扩大搜索范围或成像视场。国内外对基于旋转双棱镜的激光跟踪理论研究集中在光束转向机制、光束扫描模式、棱镜回转控制等方面。 产学研合作开发,意向合作单位:从事光电精密仪器开发的经验,对于激光跟踪技术具有一定的技术积累,如ABB公司、Leica、西门子、新松机器人、沈阳机床厂、高校科研院所以及国防单位等。项目阶段:小试效益分析:本项目在多模式激光跟踪方面形成的研究成果处于国际先进水平,不仅能够解决工业生产中对大范围、高精度特征的测量需求,而且在多自由度特征信息提取以及智能化控制等领域应用前景广阔,在推动激光跟踪测量技术的产业化进程、提高工业自动化水平和人才培养等方面,具有巨大的经济效益和社会效益。
同济大学 2021-04-10
测量电子极小位移的新方法
 随着激光技术的不断发展,超快超强激光可以在飞秒的时间尺度(1飞秒=10-15 秒)内作用于电子使电子产生约0.1纳米(1纳米=10-9米)量级的空间位移。利用超短超强激光脉冲,人们将可以实现分子尺度下的电子位置的超快及超高精度的位置控制。然而现有的探测技术,却无法实现对电子如此微小位移的精确测量。隧道扫描显微镜(STM)利用的电子量子隧穿信号能以0.1纳米的横向和0.01纳米的纵向分辨率对静止的原子进行成像,却无法对运动中的电子进行成像。光电子显微镜(PEEM)成像系统虽然可以测量运动电子的位置,但是其最好的分辨率仅能达到约3纳米,无法在0.1纳米的尺度进行位移测量。日前,该团队利用强场电离中的时间双缝干涉图样,提出对电子在激光脉冲下的微小位移进行了测量的新方案,该方案的分辨率可达0.01纳米。为了测量电子在超短脉冲作用下的位移,他们把导致电子位移的超短脉冲置于两束较长反向旋转的圆偏振光之间。两束反旋向的圆偏振光先后分别电离电子,构成时间上的电子波包双缝干涉,这在电子动量谱中产生涡旋结构。在没有中间的超短脉冲时,该涡旋结构角向是均匀分布的。当中间加入了一束任意的被测超短脉冲,它将作用于前一圆偏光电离的电子使之产生微小位移,这个微小位移使得电子波包获得一个额外相位,从而导致先后两个电子波包的干涉结构在角方向产生了非均匀性。他们提出通过测量这个非均匀的角向分布,可以准确地提取出电子在超短脉冲作用下产生的亚纳米量级的微小位移。他们的方案对激光的焦斑效应以及两束圆偏振光的相位抖动具有很好的抗干扰能力。该理论方案近期以“Proposal for measuring electron displacement induced by a short laser pulse”为题在线发表在《物理评论快报》上【Phys. Rev. Lett. 122, 053201, (2019)】,光学所的博士生肖相如为第一作者、彭良友教授为通讯作者。左图:新方案示意图;右图:测量方案给出的理论预测结果。 研究团队近期还与吉林大学丁大军教授领导的研究组紧密合作,理论提出并在实验上实现了对椭圆偏振强激光椭偏率的原位测量新方案。他们利用两束其它参数相同而旋向相反的椭偏光来电离惰性气体氙(Xe)原子,强场电离得到的电子阈上电离谱和单电离离子总产率谱敏感地依赖于两束光脉冲之间的延时。这些能谱和产率随延时的周期性调制,能够准确反映一个光学周期之中椭圆偏振光的电场强度的最小和最大值间的比值,因此可以用来准确提取每一束椭偏光的椭偏率。研究表明,这一椭偏率测量方案在很大的激光参数范围内普遍适用,这一工作在准确表征超快强激光场的性质方面迈出了重要一步,将对强场物理研究中精细操控原子分子内的超快过程起到重要推动作用。该项成果以“Accurate in situ Measurement of Ellipticity Based on Subcycle Ionization Dynamics” 为题,于2019年1月9日发表在《物理评论快报》上【Phys. Rev. Lett. 122, 013203 (2019)】,吉林大学原子与分子物理研究所的王春成副教授、博士研究生李孝开、北大博士生肖相如为论文共同第一作者,北京大学彭良友教授、吉林大学丁大军教授为该论文的通讯作者。 这些研究工作得到了国家自然科学基金委、科技部、人工微结构和介观物理国家重点实验室、北京量子信息科学研究院、极端光学协同创新中心等的重要支持。 两篇论文的原文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.053201https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.013203
北京大学 2021-04-11
造气炉气化层温度实时测量系统
1.项目简介:应用间接测温与计算机系统特性辩识为一体的智能实时测温方法,即依据间接测温信号与校正测试温度信号,对系统的动态教学模型进行分辨识和参数估计,并由辨得到的对象特性对气化层温度运行最可信估计的测温方法,实现间歇式固定层煤气发生炉(简称造气炉)气化层温度实时准确测量。 2.技术特点;该工业测温精度高,可靠性强,检测装置能长期安全运行,对造气炉内温度场分布、工艺运行不产生影响;为造气炉正常安全运行,节能降耗和实现造气工艺闭环自动控制提供了先决条件。
武汉工程大学 2021-04-11
链路、路径、网络可用带宽测量系统
本技术成果为一个功能模块,可以嵌入到一块硬件板卡或者一个网络测量设备之中,形成一种网络测 量硬件产品;也可以集成到其它网络应用系统之中,扩展和改善网络应用系统的网络、路径、链路选择的 能力。
中山大学 2021-04-10
一种牙颌模型测量装置
本发明公开了一种基于光栅投影的牙颌模型测量装置,用于牙颌模型的非接触式测量,包括牙模定位模块、光路调整模块和视觉测量模块,其中,所述牙模定位模块用于装夹待测量的牙颌模型,并实现对牙颌模型的姿态调整;所述视觉测量模块设置在所述光路调整模块上,用于对牙颌模型进行扫描测量;所述光路调整模块用于对视觉测量模块的测量角度进行调整,在光路调整模块和牙模定位模块的作用下,确定出牙颌模型的测量姿态和角度,从而实施对牙颌模型的扫描测量。该测量装置可便捷地调节微型投影仪与工业相机的位置,实现光路的快速调整;可便捷可靠地
华中科技大学 2021-01-12
经济型激光快速测量机
实物逆向工程是指基于一个可以获得的实物模型来重新定义设计概念,重新设计、构造新的实物模型,进而实现在现有实物基础上的再设计和再制造。这种再设计和制造的方法保留了原实物模型的优点、改进其不足,大大缩短了产品设计、制造的周期。用逆向工程进行设计开发新产品,起点高,见效快,很适用于现代工业生产要求。 实物逆向工程整个过程分为几个阶段进行,包括了实物表面信息数字化采集,数据处理,曲面重构,模型重建,以及模型再制造等几个阶段。第一阶段的数据采集是整个逆向工程的基础。如何快速、准确、低成本地采集数据成为人们关注的焦点。经济型激光快速测量机就是一台低成本、快速采集实物表面数据的设备。该设备具有3个自由度(两个直线、一个旋转),利用一字型直线激光从不同角度扫描实物表面,整个扫描过程可以在1分钟内完成。测量精度为0.05mm。该测量设备的特点为: 可以多角度地灵活扫描实物表面,采集速度快;结构简单,成本低,易于制造和维护;适用于逆向工程的数据采集。 凡是涉及实物逆向工程的工作均可使用。例如在医学领域的人体数字化、人体建模、医学美容整形、针对不同个体的假肢制造,牙模的制造;模具制造业中的实物样件的测绘;在服装、鞋帽行业,利用逆向工程的方法量体裁衣,做出更为舒适的服装和鞋帽;在公安刑侦领域,脚印、工具痕迹,弹道采集,三维面容识别等方面。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 26 27 28
  • ...
  • 75 76 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1