高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种无机-有机复合膨润土废水处理材料的制备方法
本发明公开了一种无机-有机复合膨润土废水 处理材料的制备方法。方法的步骤为:1)将粉碎、过100目筛 的膨润土投加到阳离子表面活性剂溶液中,然后水浴搅拌1~2 小时;2)将AlCl3溶液加入到上 述悬浮液中,用量为1~10mmol AlCl3/g膨润土,搅拌5~10分 钟;3)水浴搅拌下,将NaOH或 Na2CO3溶液滴加到上述悬浮液中,产物室温老化10小时以上; 4)经多次洗涤过滤后,烘干、研磨即可。本发明的优点是:首 先将表面活性剂交换到膨润土层间,然后在膨润土层间和表面 形成羟基铝,减少了羟基金属和表面活性剂在膨润土层间的竞 争作用,有利于磷酸根的交换吸附和提高改性膨润土混凝性 能,能够同时去除废水中的有机污染物和磷酸盐。
浙江大学 2021-04-11
一种叶片状CuO‑NiO复合结构纳米材料及其制备方法
本发明公开了一种叶片状CuO-NiO复合结构纳米材料及其制备方法。用硝酸镍和碳酸钠(或碳酸氢钠)进行微波反应,得含镍沉淀物,然后煅烧获得NiO纳米粉。称取0.05g?NiO,加入到30mL含一定量醋酸铜水溶液中,超声分散20~30分钟,得分散液A;称取2mmol?NaOH,加入30mL去离子水,溶解得溶液B;将溶液B加入到分散液A中,磁力搅拌15~25分钟,反应混合液置于家用微波炉中,设置低火档加热20分钟;反应结束后,自然冷却,抽滤干燥,即得本发明的叶片状CuO-NiO复合结构纳米材料。叶片状Cu
安徽建筑大学 2021-01-12
一种丙烯酸镁-超细水泥双液复合灌浆材料
本发明公开了一种丙烯酸镁-超细水泥双液复合灌浆材料。灌浆材料主料分为A、B组分,其中A组分的成分及重量配比为:超细水泥:水:活性氧化镁:粉剂萘系高效减水剂:硅粉=100:50-100:0-5:0.5-1.5:2-5,B组分的成分及重量配比为浓度为36%-40%的丙烯酸镁溶液:氯化钙:三乙醇胺:过硫酸钠=10-30:0.5-3:0.1-0.5:0.01-0.05。本发明是采用聚合物与超细水泥复合而成的灌浆材料,具有可灌性好、凝结时间可调、浆液结石强度高等优点。本发明在破碎松散地层固结、地基改良、建筑物基础加固等领域具有广泛的应用前景。
西南交通大学 2018-09-18
一种阴极保护用石墨复合接地材料及其制备方法
本发明公开了一种阴极保护用石墨复合接地材料及其制备方法,包括内芯和采用复合石墨线绕内芯 编织获得的复合石墨编织外层,复合石墨线由复合石墨带捻制获得,其中:内芯由锌芯石墨线和铜芯石 墨线构成,锌芯石墨线包括锌纤维芯和第一复合石墨外层,第一复合石墨外层采用复合石墨带绕锌纤维 芯捻制获得;铜芯石墨线包括铜纤维芯和第二复合石墨外层,第二复合石墨外层采用复合石墨带绕铜纤 维芯捻制获得;复合石墨带包括两层蠕虫石墨层和铺设于两层石墨层间的无机纤维,无机纤维外
武汉大学 2021-04-14
一种聚吡咯/海泡石水性纳米复合防腐材料的制备方法
(专利号:ZL 201410577144.3) 简介:本发明公开了一种聚吡咯/海泡石水性纳米复合防腐材料的制备方法,属于金属防腐技术领域。该方法具体步骤如下:(1)将磷酸、吡咯加入到海泡石水分散液中搅拌,将溶有氧化剂的磷酸水溶液逐滴加入,滴加完毕后搅拌,获得纤维状聚吡咯/海泡石分散液;(2)将丙烯酸乳液加入到上述聚吡咯/海泡石分散液中,再加入硅烷水解液,搅拌,获得聚吡咯/海泡石水性纳米复合防腐材料。本发明采用原位化学氧化聚合方法将聚吡咯与
安徽工业大学 2021-01-12
利用具有磁性功能的核壳结构纳米材料进行糖基化肽和磷酸化肽富集
该材料具有双功能基团,能同时富集糖肽和磷酸化肽,同时具有体积排阻的作用,该方法合成简便,重复性好,具有较好的富集效果。
上海理工大学 2021-01-12
氧化铁黑
氧化铁黑是一种带有磁性的黑色颜料,由于性能优异,应用广泛,且深受商家的重视。在我国,此种产品研究和生产使用的历史较短,随着现代化科学技术的发展,现代化办公用品的不断更新,使带磁性的黑色印刷,复印材料的迫切需要,使氧化铁黑等黑色磁性颜料的开发研究及应用备受重视,研究和生产的商家看到这一不可多得的商机,纷纷上马。由于新产品的技术含量较高,致使较多的生产厂家质量或生产成本存在一定的缺陷,以致该产品上不去,产品市场供应较紧缺。 氧化铁黑产品是黑色或黑红色粉末,具有磁性,相对密度为5.18,熔点为1594℃。不溶于水及醇,但溶于浓盐酸,耐光,耐候性良好,着色力和遮盖力都很高,在有机溶剂中十分稳定,耐碱性良好,但颗粒易被氧化变成红色的氧化铁,在200-300℃时灼烧则易形成γ-Fe2O3。
武汉工程大学 2021-04-11
仿生催化氧化技术
以酶类结构的金属卟啉为催化剂,模仿生物氧化历程,突破温和条件下高效、专一活化氧气的技术难 题,实现高附加值含氧有机化物的合成,并致力于实现该技术的工业应用,填补国内外技术空白,从本质 上解决化工领域氧化过程的安全隐患。
中山大学 2021-04-10
微弧氧化技术
微弧氧化(Micro-arc oxidation,MAO)技术是通过电解液与相应电参数的组合,在铝、镁、钛及其合金表面依靠弧光放电产生的瞬时高温高压作用,原位生长出以基体金属氧化物为主的陶瓷膜层。 微弧氧化工艺克服了硬质阳极氧化的缺陷,极大地提高了膜层的综合性能。微弧氧化膜层与基体结合牢固,结构致密,韧性高,具有良好的耐磨、耐腐蚀、耐高温冲击和电绝缘等特性。该技术具有操作简单和易于实现膜层功能调节的特点,而且工艺不复杂,无废水废气排放,不造成环境污染,是一项全新的绿色环保型材料表面处
常州大学 2021-04-14
甲酸电氧化技术
近日,清华大学化学系王定胜教授、李亚栋院士领导的课题组在甲酸电氧化领域取得突破,相关工作以“负载在氮掺杂碳上的单原子Rh:一种甲酸氧化的电催化剂”(Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation)为题在《自然·纳米技术》(Nature Nanotechnology)发表。 燃料电池是一种理想的能量来源,它可以以环境友好的方式将化学能转换为电能。氢氧燃料电池作为航空飞船的主要燃料,在上世纪80年代就已经得到了发展,近年来氢氧燃料电池在汽车上的应用也有了突飞猛进的提高。然而氢氧燃料电池需要用体积大且危险的高压氢气作为其燃料,这限制了氢氧燃料电池的发展。而直接甲酸燃料电池(DFAFCs)由于其体积小,毒性小,nafion@膜的穿透率低等优点,被认为是未来便携式电子设备最有前途的电源之一。在之前的研究中,负载型纳米级钯和铂通常被认为是DFAFCs的阳极反应甲酸电氧化(FOR)中最有效的催化剂,并得到了深入的研究。然而,由于FOR催化剂质量活性较低和一氧化碳抗毒性较差, DFAFCs阳极材料的发展达到了一个瓶颈,极大地阻碍了其应用。 SA-Rh/CN的合成路径示意图及其表征 在本工作中,研究人员使用主-客体合成策略成功地合成负载原子分散Rh的氮掺杂碳催化剂(SA-Rh/CN),发现尽管Rh纳米颗粒对甲酸氧化活性很低,但是SA-Rh/CN却具有极好的电催化性能。与最先进的催化剂Pd/C和Pt/C相比,SA-Rh/CN的质量活性分别提高了28倍和67倍。有趣的是,在CO剥离实验中,我们发现虽然纳米级Rh催化剂对CO毒性十分敏感,但是SA-Rh/CN很难吸附CO并且可以在很低的电压下氧化CO,这说明SA-Rh/CN对CO毒化几乎免疫。经过长期反应的测试后,SA-Rh/CN中的Rh原子具有抗烧结的能力,并因此在30000s的CA测试或者20000圈ADT测试后活性几乎没有改变。在组装电池的实验中,SA-Rh/CN的质量比能量密度在不同温度下分别是商业钯碳催化剂的8.8倍(30oC),14.8倍(60oC)和14.1倍(80oC),这也说明了SA-Rh/CN在DFAFCs的应用中具有很高的潜力。最后,研究者用密度泛函理论(DFT)计算了Rh单原子甲酸氧化的机理。研究者发现在SA-Rh/CN上,甲酸根路线更为有利。和Rh纳米颗粒具有较低的CO吸附能垒不一样,SA-Rh/CN上的Rh单原子吸附CO能垒较高,以及与CO的相对不利的结合,使SA-Rh/CN具有极高的CO抗毒性。 这一发现将传统的甲酸电氧化催化剂的质量比活性提高了一个数量级,并且很好地解决了传统纳米催化剂的CO毒化问题。该发现有助于在燃料电池领域取得突破,并有望应用于便携式电子设备上。 本论文的通讯作者是王定胜教授、李亚栋院士,清华大学博士后熊禹是本文的第一作者。本研究受到国家自然科学基金委和科技部的经费资助。 论文链接: https://www.nature.com/articles/s41565-020-0665-x
清华大学 2021-04-11
首页 上一页 1 2
  • ...
  • 82 83 84
  • ...
  • 379 380 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1