高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种铁氧化物结晶法修复六价铬污染土壤的方法
本发明公开了一种铁氧化物结晶法修复六价铬污染土壤的方法。首先将土壤磨碎并加入HCl溶液调节pH,再根据土壤中铬的赋存形态,根据六价铬和总铬的浓度配制相应的二价铁溶液[或FeSO4和Fe2(SO4)3混合溶液],将铁的溶液加入到土壤还原六价铬。然后迅速加入NaOH热溶液形成Fe2+、Fe3+、Cr3+的共沉淀,通入热空气进行氧化一段时间,形成铁氧化物晶体从而将铬(包括六价铬和三价铬)稳定在晶格中,形成的晶体十分稳定,在酸碱中均难以溶解。本方法简单易行,成本低廉,安全可靠,无二次污染问题,稳定化处理后的
安徽建筑大学 2021-01-12
一种利用行波固有频率和原子分解能量熵的故障选相法
本发明涉及一种输电线路故障选相方法,尤其是涉及利用行波固有频率和原子分解能量熵的故障选 相法。本发明利用原子分解算法处理三相电流,根据迭代产生的原子确定电流信号中的主导频率成分的 频率值和能量熵值信息,结合三相电流的主导成分频率值与能量熵值特征,对多相故障与多相接地故障 情况下的故障类型进行判别;针对单相故障,则根据不同基准相下解耦得到β模量来寻找故障相。该方 法准确有效,能快速辨别所发生的故障类型。
武汉大学 2021-04-13
(R)-硫辛酸手性中间体的绿色酶法不对称合成技术
(R)-硫辛酸是一种能消除老化与致病的类似维他命的物质,可以去除机体自由基,促进机 体利用葡萄糖合成维生素C,能有效去除黑色素,还可协助辅酶进行有利于机体免疫力的生理 代谢,是一种万能抗氧化剂药物,广泛应用于预防和治疗心脏病、糖尿病及老年痴呆症。而近 年来欧美国家开始将其应用于食品、保健品及化妆品,应用范围的扩展为其市场增长提供了广 阔的空间。目前 (R)-硫辛酸的生产主要是通过化学拆分法合成 (化学拆分法合成途径) ,即先通 过化学法合成混旋硫辛酸,再利用苯乙胺作为拆分剂对其进行拆分,得到的右旋硫辛酸苯乙胺 盐,经盐酸脱盐得到 (R)-硫辛酸粗品,精制后即可得到合格的 (R)-硫辛酸。但由于该法工艺复 杂,需要多次结晶,成本高、理论得率仅为50%。 本技术利用酶法不对称还原8-氯-6-羰基辛酸乙酯制备 (S)-8-氯-6-羟基辛酸乙酯,再结合化 学法合成 (R)-硫辛酸的工艺路线 (化学-酶法合成途径) ,可使 (R)-硫辛酸的合成步骤由化学-拆 分法的9步缩减到化学-酶法的6步、产品收率提高40%、生产成本降低20%,而且也显著地减少 了原料消耗和废物排放,是典型的环境友好的绿色合成工艺。合成的最终产品 (R)-硫辛酸的光 学纯度在99%以上,其产业化更具有经济效益、更符合绿色技术的要求 
华东理工大学 2021-04-13
一种适用于动态法测量火焰温度的热电偶及其制造方法
本发明公开了一种适用于动态法测量火焰温度的热电偶,包括两根热电偶丝、偶丝结点、绝缘套管、保护套管和补偿导线,偶丝结点由两根热电偶丝焊接而形成,偶丝结点呈圆片状;两根热电偶丝分别为上热电偶丝和下热电偶丝;上热电偶丝和下热电偶丝与偶丝结点接触点的切线的夹角为 30~60°;上热电偶丝和下热电偶丝分别穿过绝缘套管的两个进丝孔后与保护套管上的两补偿导线连接。本发明采用圆片状的偶丝结点,能降低热电偶丝的导热损失,减小偶丝结点的热惯性及温度不均匀性,减少热电偶对火焰的干扰以及火焰内颗粒在热电偶表面的沉积,提高测温的准确度和灵敏度,以便快速准确地得到火焰温度。
华中科技大学 2021-04-13
一种基于极化电流测量的 10kVXLPE 电缆老化现场快速诊断方 法
本发明公开了一种基于极化电流测量的 10kV-XLPE 电缆老化现场快速诊断方法,通过改进了当松弛电流拟合参数 n 位于 0&lt、 n≤0.3 或 1.2≤n&lt、2 时的哈蒙近似算法,扩展了哈蒙近似算法的应用范围, 且能根据现场实际需要的介质损耗因数 tanδ的频率范围极大地缩短 极化电流测量时间,并可通过改进的哈蒙近似算法快速直观地获取对 应频率下的介质损耗因数tanδ,从而根据对应频率下介质损耗因数tan δ的大小判断电缆老化状况。因而本发明提供的一种基于极化电流测 量的1
华中科技大学 2021-04-14
一种采用多谱线比值法提高激光探针分析精确度的方法
本发明属于激光探针定量分析技术,具体为一种提高激光探针 分析精确度的方法,以利用多谱线比值法提高激光探针定量分析准确 度和精密度。该方法首先对被测元素和基体元素的多条谱线间的强度 比值进行优化,然后将优化后的一些强度比值作为定量分析模型的输 入值,对模型进行训练,使用训练后的分析模型实现对被测物中被测 元素的定量分析。该方法自动去除不合适的谱线比值,只留下那些能 很好地反映被测元素含量信息和等离子体状态信息的被测元素
华中科技大学 2021-04-14
氨法-塔式常压捕集吸收二氧化碳系统及工艺
一种氨法-塔式常压捕集吸收二氧化碳系统及工艺,包括稀氨水供给装置等,二氧化碳吸收塔包括罐体等,罐体顶部设有排气管,稀氨水供给装置通过管路与第一喷淋装置连接,引风机通过管路与第一换热器连接,第一换热器通过管路伸入罐体下部,罐体底部、第二泵、第二换热器、结晶槽、离心机、母液槽之间依次通过管路连接,母液槽、第三泵、第二喷淋装置之间依次通过管路连接,第二、三泵的进口之间连接第一管路,高浓度氨水储槽通过管路与第一泵连接,第一泵通过管路与第二喷淋装置连接,冷却装置的冷却水进水管与第一换热器的冷却水进水管连接在一起,冷却水进水管上设有调节阀。本发明减碳效率高,工艺流程简单、系统结构简化、投资及运行成本低廉。
安徽理工大学 2021-04-13
表面等离激元共振法测液体折射率实验仪 COC-SPR
实验原理 1、在电磁场的作用下,材料中的自由电子会在金属表面发生集体振荡,产生表面等离激元(Surface Plasmon); 2、共振状态下电磁场的能量被有效转换为金属表面自由电子的集体振动能。
成都华芯众合电子科技有限公司 2022-06-18
二维反铁材料MnPS3中磁振子输运的实验进展
近年来,磁振子电子学在信息计算和信息传输领域表现出了极具价值的应用潜力。磁振子电子学利用以磁振子为载体的电子自旋进动来实现信息处理,有望实现无热量产生、低耗散的信息传输,相比于传统意义上通过操纵电荷来实现信息的处理的微电子学具有无可比拟的巨大优势。磁振子电子学领域的进展很大程度上依赖于能够有效传输磁振子的新材料的发现,而获得长距离的磁振子输运始终是磁振子电子学研究的重中之重。与通常的三维磁性绝缘体(如Yttrium Iron Garnet)相比,二维尺度下的磁振子被理论预言有很多的新颖物理效应,例如自旋能斯特效应,拓扑磁振子,以及外尔磁振子等。 在最新的研究文章中,量子材料科学中心韩伟课题组在二维磁性体系中展开工作并取得了重要进展,观测到了二维反铁磁体系中磁振子的长距离输运。MnPS3晶体是一种层状反铁磁材料,利用机械剥离手段得到了二维的MnPS3薄片。MnPS3薄片上制备了用于测量磁振子输运的非局域器件,器件结构如图A所示。器件左侧Pt电极通过热方法来注入磁振子,右侧Pt电极探测在二维MnPS3中扩散传输的磁振子。在二维反铁磁MnPS3中,实验上观测到了几微米的磁振子扩散长度。并且从图B中可以看出,随着注入端和探测端距离的增加,探测到的非局域信号表现出e指数衰减的形式,跟一维漂移扩散模型的理论模型一致。在此基础上,他们还系统研究了MnPS3厚度对磁振子弛豫性质的影响。随着MnPS3厚度从40nm降低至8nm,磁振子弛豫长度由4μm减小到1μm(图C),这可能是由较薄的MnPS3中较强的表面杂质散射效应导致的。 该文章中的结果具有重要的学术价值:二维材料中的磁振子输运实现为二维磁性材料在磁振子电子学的应用与发展奠定了基础,也有望推动磁振子在量子尺度下的新颖量子物理性质研究。图:二维反铁磁体系中磁振子输运研究。(A)二维反铁磁MnPS3中的磁振子输运测量结构示意图。(B)自旋信号R_NL^*随电极间距的依赖关系,与理论预言的e指数衰减吻合。(C)磁振子弛豫长度随MnPS3厚度的依赖关系。 该工作于2019年2月7日在线发表于物理学术期刊Physical Review X上(Phys. Rev. X 9, 011026 (2019) )。 DOI: https://doi.org/10.1103/PhysRevX.9.011026。该工作由韩伟研究员设计和指导完成,北京大学量子材料科学中心2015级博士生邢文宇为文章第一作者,物理学院2015级本科生邱露颐为第二作者(今年9月份将去哈佛大学读博士),韩伟研究员为文章通讯作者。本工作的顺利完成得到了量子材料科学中心贾爽教授和谢心澄院士的合作帮助,以及国家重大科学研究计划、国家自然科学基金、中国科学院战略性先导科技专项的支持。
北京大学 2021-04-11
用于制备金属软磁复合材料的绝缘粘结剂及其使用方法
本发明公开一种用于制备金属软磁复合材料的绝缘粘结剂及其使用方法。本发明绝缘粘结剂是一种纳米改性有机硅树脂绝缘粘结剂,成分由有机硅树脂和无机纳米分散液组成。该绝缘粘结剂大幅度提高了有机硅树脂的耐热温度,提高了磁粉芯的力学强度,成分选择合理使用效果好,对铁基、镍基和其他成分的金属软磁磁粉都有很好的绝缘粘结效果。采用本发明提供的绝缘粘结剂所制备的磁粉芯具有综合的优良磁性能和力学性能。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 49 50 51
  • ...
  • 58 59 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1