高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
XTC-II人体形态测量尺
XTC-II人体形态测量尺   人体形态测量尺适用于测量人体各肢体的长度、宽度及围度等形态指标的测量,包括:长马丁尺、中马丁尺、短马丁尺、直脚规、游标卡尺、围度尺、足长测量仪、指间距尺。 1、长马丁尺: 规格:130厘米。精度:±0.1厘米。用于测量下肢长等。 用法:将尺子垂直于地面,移动尺标至测量点,尺标所对应的数字即为离地面的高度。 2、中马丁尺: 规格:100厘米。精度:±0.1厘米。用于测量上肢长、上臂长、前臂长和手长等。 用法:移动尺标至测量点,目标物夹在尺头与尺标之间,读取数字即为长度。 3、短马丁尺: 规格:70厘米。精度:±0.1厘米。用于测量大腿长、小腿长和跟腱长等。 用法:将尺子垂直于地面,移动尺标至测量点,尺标所对应的数字即为离地面的高度。 4、直脚规: 规格:70厘米。精度:±0.1厘米。用于测量肩宽、骨盆宽、胸宽和胸厚等。 用法:移动尺标至测量点,目标物夹在尺头与尺标之间,读取数字。 5、游标卡尺: 规格:20厘米。精度:±0.1毫米。用于测量手宽、足宽、肱骨和股骨的远端宽等。 用法:松开游标上的螺钉,移动游标至测量点,将目标物夹在尺头与尺标中间,所对应的数字即为测定点的长度。 6、围度尺: 规格:150厘米。精度:±0.1厘米。用于测量胸围、腰围、臀围、上下肢体及其他人体曲线的围度等。 用法:先将卷尺绕在测量点上,注意不要缠得太紧,即可读取数字。 7、足长测量仪: 规格:40厘米。精度:±0.1厘米。用于测量足高、足长等。 足长测量:受试者将足放平底座上,足跟部位靠挡板、脚侧靠尺体,拨动滑尺A靠在足尖,滑尺A面对应的刻度值即为足长尺寸。 足弓测量:受试者将足放平在底座上,拨动滑尺B使下平面紧靠“足弓”,滑尺B观测线上的量高标尺的刻度值即为足弓高尺寸。 8、指间距尺(臂伸测量尺): 规格:最大测量长度120厘米,加上加长杆后最大测量长度240厘米。精度:±0.1厘米。用于测量臂伸、身长、指间距(臂展)等。 用法:两手伸直于身体两侧,与肩平行,移动尺标至测量点,测量左右手指尖之间的最长距离。
上海欣曼科教设备有限公司 2021-08-23
XTC-II人体形态测量尺
XTC-II人体形态测量尺   人体形态测量尺适用于测量人体各肢体的长度、宽度及围度等形态指标的测量,包括:长马丁尺、中马丁尺、短马丁尺、直脚规、游标卡尺、围度尺、足长测量仪、指间距尺。 1、长马丁尺: 规格:130厘米。精度:±0.1厘米。用于测量下肢长等。 用法:将尺子垂直于地面,移动尺标至测量点,尺标所对应的数字即为离地面的高度。 2、中马丁尺: 规格:100厘米。精度:±0.1厘米。用于测量上肢长、上臂长、前臂长和手长等。 用法:移动尺标至测量点,目标物夹在尺头与尺标之间,读取数字即为长度。 3、短马丁尺: 规格:70厘米。精度:±0.1厘米。用于测量大腿长、小腿长和跟腱长等。 用法:将尺子垂直于地面,移动尺标至测量点,尺标所对应的数字即为离地面的高度。 4、直脚规: 规格:70厘米。精度:±0.1厘米。用于测量肩宽、骨盆宽、胸宽和胸厚等。 用法:移动尺标至测量点,目标物夹在尺头与尺标之间,读取数字。 5、游标卡尺: 规格:20厘米。精度:±0.1毫米。用于测量手宽、足宽、肱骨和股骨的远端宽等。 用法:松开游标上的螺钉,移动游标至测量点,将目标物夹在尺头与尺标中间,所对应的数字即为测定点的长度。 6、围度尺: 规格:150厘米。精度:±0.1厘米。用于测量胸围、腰围、臀围、上下肢体及其他人体曲线的围度等。 用法:先将卷尺绕在测量点上,注意不要缠得太紧,即可读取数字。 7、足长测量仪: 规格:40厘米。精度:±0.1厘米。用于测量足高、足长等。 足长测量:受试者将足放平底座上,足跟部位靠挡板、脚侧靠尺体,拨动滑尺A靠在足尖,滑尺A面对应的刻度值即为足长尺寸。 足弓测量:受试者将足放平在底座上,拨动滑尺B使下平面紧靠“足弓”,滑尺B观测线上的量高标尺的刻度值即为足弓高尺寸。 8、指间距尺(臂伸测量尺): 规格:最大测量长度120厘米,加上加长杆后最大测量长度240厘米。精度:±0.1厘米。用于测量臂伸、身长、指间距(臂展)等。 用法:两手伸直于身体两侧,与肩平行,移动尺标至测量点,测量左右手指尖之间的最长距离。
上海欣曼科教设备有限公司 2021-08-23
环氧树脂纳米复合材料用多功能碳纳米管的制备方法
本发明所涉及的环氧树脂纳米复合材料用多功能碳纳米管,适用于所有高性能复合 材料领域。由于本发明所涉及的碳纳米管具有增强、分散、界面粘结、固化等多种功能, 由其制得的碳纳米管/环氧树脂复合材料具有碳纳米管本身的高强度、高模量、良好的 韧性、低密度、导电等优点,可广泛应用于各种先进材料领域,市场前景十分可观。该 多功能碳纳米管是固态材料,储存和运输十分方便;并且本身具有了良好的分散性和界 面粘结性能,操作工艺简单,相对降低了生产成本。因而,本发明为高性能纳米复合材 料的工业化生产提供了新的途径
同济大学 2021-04-11
以聚丙烯腈微纳米球制备多壁碳纳米管
碳纳米管作为一种一维有序的纳米碳质结构和功能材料,具有比强度高、导热系数高、电导率高、表面活性高和耐化学腐蚀等特点,可在吸附、储能、储气、纳米器件、催化剂载体、高性能结构和功能复合材料等方面具有潜在的和广泛的应用前景。多壁碳纳米管作为复合材料添加剂,可以有效改善复合材料的强度等性能,其制备成本又远低于单壁碳纳米管,可望得到更为广泛的应用,这种广泛程度取决于对其在规模化、低成本、高纯度制备技术上的进一步突破。 本技术是一种以聚丙烯腈微纳米球制备高纯度多壁碳纳米管的方法,其目的在于克服现有技术如电弧放电法和激光蒸发法的下列弊端;制备过程所需能量高,成本居高不下;化学气相沉积法需要添加金属催化剂,制备的碳纳米管纯度不高,含有无定型碳和催化剂颗粒;聚合物纺丝法得到的碳纳米管纯度和收率低。采用本技术制备碳纳米管,具有不需金属催化剂、纯度高、无需纯化、分散性好和可大规模生产的特点,显著优于从核壳结构高分子微纳米球胶囊出发纺丝制备碳纳米管的方法。 技术指标:多壁碳纳米管直径为15~100纳米且可控,管壁20~40层且可控,长径比大于100且可控,纯度大于 99%。
上海理工大学 2021-04-11
纳米石墨烯-碳纳米管-离子液体复合膜及其制备与应用
本发明公开了一种纳米石墨烯-碳纳米管-离子液体复合膜及其制 备与应用,该纳米石墨烯-碳纳米管-离子液体复合膜的厚度为 4000nm 至 6000nm,该纳米石墨烯-碳纳米管-离子液体复合膜由多个石墨烯片 层相互叠加形成,相邻的两个所述石墨烯片层之间的间距为 20nm~ 50nm;相邻的两个所述石墨烯片层之间均分散有碳纳米管和离子液 体。本发明所述的复合膜比表面积高,并且该复合膜具有良好的电化 学活性,可广泛应用于纳米
华中科技大学 2021-01-12
有层次结构的纳米立方体和纳米铁花状结构的制备方法
一种有层次结构的纳米铁立方体和纳米铁花状结构的制备方法,具体作法是:取不锈钢片和钛片、不锈钢片和钛片的面积比为2.5∶1,依次用400,600,800目砂纸抛光,清洗3-5次;超声30分钟,取出备用;配置含450g/L的FeCl2,抗环血酸1.4g/L,氟化铵0.8g/L,复合氨基酸0.7g/L,柠檬酸0.086g/L,0.05mol/L盐酸的电镀液;以处理后的钛片做阴极,不锈钢片做阳极,进行0.1A的恒电流电镀,电镀时间为3-60s;电镀完后取出钛片,即获得纳米铁立方体或纳米铁花状结构。该方法制得的纳米铁为立方体及花状结构,比表面积大,活性好,且设备简单,能耗低,适合大规模生产。
西南交通大学 2016-10-20
基于PCB线圈的磁耦合谐振式无线输电系统
该成果采用PCB线圈组成的磁耦合谐振式无线电能传输系统可实现中短距离无线供电,该系统的创新在于采用PCB线圈替代传统的线绕线圈,铜线绕制的线圈容易变形而引起参数变化,对系统完全保持一致的谐振频率增加了难度而PCB 板生产出来的线圈参数几乎能完全保持一致,因此有利于保持系统的谐振频率一致。
电子科技大学 2021-04-10
一种铁氧体软磁材料的注射成型方法
本发明公开了一种软磁铁氧体材料的注射成型方法。包括如下步骤:1)粉料制备:将铁氧体粉料进行一次混磨,干燥后,将粉料进行预烧,将预烧后的粉料破碎后,再进行二次混磨,并进行干燥处理;2)混炼造粒:将步骤1)得到的粉料与粘结剂均匀混合后,混炼,得到混料,将混料粉碎;3)注射成型:将粉碎后的混料加热,在压力条件下,注入到模腔中,打开模具冷却后即得到成型坯体;4)脱脂:将成型坯体置入三氯乙烯中脱脂,干燥,再进行热脱脂;5)烧结:将脱脂后的成型坯体烧结,得到铁氧体软磁材料。本发明适合制备中小型形状复杂、高精度的铁氧体磁芯器件,所制备的铁氧体软磁材料具有密度大而均一、内部组织均匀、机械强度高和铁损相对较低的特点。
浙江大学 2021-04-11
一种铁氧体软磁材料的注射成型方法
本发明公开了一种软磁铁氧体材料的注射成型方法。包括如下步骤:1)粉料制备:将铁氧体粉料进行一次混磨,干燥后,将粉料进行预烧,将预烧后的粉料破碎后,再进行二次混磨,并进行干燥处理;2)混炼造粒:将步骤1)得到的粉料与粘结剂均匀混合后,混炼,得到混料,将混料粉碎;3)注射成型:将粉碎后的混料加热,在压力条件下,注入到模腔中,打开模具冷却后即得到成型坯体;4)脱脂:将成型坯体置入三氯乙烯中脱脂,干燥,再进行热脱脂;5)烧结:将脱脂后的成型坯体烧结,得到铁氧体软磁材料。本发明适合制备中小型形状复杂、高精度的铁氧体磁芯器件,所制备的铁氧体软磁材料具有密度大而均一、内部组织均匀、机械强度高和铁损相对较低的特点。
浙江大学 2021-04-11
一种软磁复合材料的压滤制备方法
本发明公开了一种软磁复合材料的压滤成型的制备方法。其步骤为:1)多孔模具的制备;2)软磁粉末的制备;3)软磁粉末的筛分及性能检测;4)将软磁粉末进行钝化处理;5)将软磁粉末与水或有机溶剂混合,并添加粘结剂,搅拌制成均匀分布的浆液,然后进行浇筑;6)将上述步骤制得的浆液进行压滤成型;7)烘干,烧结成型。本发明方法的优点是:通过压滤法而非传统的直接干粉压制成型所需的设备简单,工序简化,得以使成本降低,并且制备的软磁复合材料具有较好的均匀性。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 42 43 44
  • ...
  • 186 187 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1