高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于聚类强化学习的城市道路交叉口交通信号优化方法
一种基于聚类强化学习的城市道路交叉口交通信号优化方法,该方法涉及智能优化技术领域,可以提高单位时间内通过道路交叉口的车辆数。道路交叉口是道路网的重要组成部分,也是路段交通流的瓶颈。研究显示,城市平面交叉口的通行能力只相当于路段上的40%-50%。平面交叉口所消耗的时间约占全程时间的31%,而车辆行驶延误时间中有80%-90%由平面交叉口延误造成。提高城市平面道路交叉口的通行能力,可以减少车辆延误,节约人们的出行时间,增强人们的出行安全,并能够减轻环境污染。  本发明能够根据交叉口的 交通状态自动选择合适的相位动作,以适应交叉口交通状况的变化,能够提高单位时间内通  过交叉口的车辆数,减少车辆延误。与其他聚类强化学习方法的不同之处在于,本发明在学 习过程中,能够根据回报值的标准差动态地增加或减少质心数,能在保证强化学习收敛的前  提下尽可能地减少质心数,从而尽可能减少Q值函数存储空间、提高收敛速度,使交通信号控制策略更快地适应当前交通流情况,从而尽可能减少交通延误。
青岛大学 2021-04-13
Er3+Y3Al5O12Pt-TiO2复合膜及其在催化降解有机染料中的应用
为了解决纳米 TiO2 作为处理工业污染废水的首选催化剂光催化效率不高,且必须采用波长小于 387 nm 的紫外光照射的问题,本发明提供一种将上转换紫外发光材料 Er3+:Y3Al5O12 与 TiO2 复合,提高光催化效率的 Er3+:Y3Al5O12/TiO2 复合膜。并将 Er3+:Y3Al5O12/TiO2 复合膜应用在催化降解有机染料中。 r3+:Y3Al5O12/TiO2 复合膜用于在可见光照射下催化降解有机染料。
辽宁大学 2021-04-11
雷朝滋:推动高校科技成果加快转化为现实生产力,更好服务经济社会高质量发展
5月28日,作为2023年中关村论坛国际技术交易大会板块重点活动之一,世界知名高校技术转移发展大会于中关村软件园国际会议中心成功举办。教育部科学技术与信息化司司长雷朝滋在致辞中表示,我们将持续推进高校技术转移体系和能力的建设,推动高校科技成果加快转化为现实生产力,更好服务经济社会高质量发展。  教育部科学技术与信息化司司长 雷朝滋 在“2023中关村论坛”世界知名高校技术转移发展大会上的致辞  尊敬的各位来宾,女士们、先生们、朋友们: 大家上午好!很高兴参加世界知名高校技术转移发展大会,与各位共同交流高校科技成果转移转化工作。我谨代表教育部科学技术与信息化司向与会各位嘉宾表示诚挚的欢迎。 5月25日,习近平主席专门向中关村论坛发来贺信,充分体现了中国政府对科技创新和国际合作的高度重视。创新是引领发展的第一动力。新时代十年,中国把科技创新摆在国家现代化建设全局的核心地位,推动科技事业发展取得显著成就,进入创新型国家行列。世界知识产权组织全球创新指数排名显示,2022年中国名列第11位,连续10年稳步提升。 高校作为科技第一生产力、人才第一资源、创新第一动力的重要结合点,是国家创新体系的重要组成部分,是科技成果的重要供给侧。近年来,中国高校坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,不断加强创新体系建设,加速汇聚创新资源,积极开展国际科技交流合作,科技创新综合实力实现跃升,取得一批重大科技突破,培养了一大批高质量创新人才,为经济社会高质量发展提供了有力支撑。据统计,2021年度高校专利授权数量超过30万项,通过转让、许可等方式转化专利的合同金额达88.9亿元。 在新的起点上,中国政府提出“教育、科技、人才是全面建设社会主义现代化国家的基础性、战略性支撑”。面临新的要求和任务,我们认为与世界高水平大学相比,中国高校科技创新支撑服务产业发展的整体水平仍存在不小的差距,科技创新赋能经济社会发展的潜力还有待进一步发挥。 为此,教育部出台《关于加强高校有组织科研 推动高水平自立自强的若干意见》,与科技部、国家知识产权局等部门合作,联合出台了《关于提升高等学校专利质量 促进转化运用的若干意见》,完善高校知识产权全流程管理体系,推行专利申请前评估和职务科技成果披露制度;加强高校有组织科研,推动企业主导的产学研深度融合,加强高质量科技成果创造,加快实现产业化;联合开展高校专业化国家技术转移机构建设,持续提升高校成果转化和技术转移专业化水平;联合推进国家大学科技园建设,探索布局未来产业科技园,推动高校科技成果与产业更好对接,培育新的经济增长点。 今后,我们将持续推进高校技术转移体系和能力的建设,推动高校科技成果加快转化为现实生产力,更好服务经济社会高质量发展。 一是深化产学研协同创新。支持高校瞄准经济社会发展需要特别是产业的需要,强化与龙头企业、中小企业的产学研合作,加强科学研究系统布局,推动科技创新与应用需求更加紧密结合,加快创新链产业链深度融合,实现科技创新与市场需求的紧密联系,加强高质量科技成果创造,支撑推动产业高质量发展。 二是提升技术转移效率。积极借鉴国外高校技术转移先进经验做法,探索高校科技成果转化的新模式新机制,大胆创新技术转移机制、大力强化专业化技术转移机构和人才队伍建设,加快促进高校科技创新成果向现实生产力转移转化。 三是加强国际交流合作。希望通过此次大会,搭建起技术转移交流合作的桥梁,持续深入推动促进国内外高校开展交流合作,相互借鉴、相互促进,积极吸纳更多国内外技术成果在中国市场转移转化,也推动中国高校的科技成果为更多国家和人民所享、所用,共同造福人类。 最后,预祝大会取得圆满成功!也欢迎更多的国内外高校积极参与世界知名高校技术转移发展大会,加强交流,共享经验,共同发展。谢谢大家!
高校科技进展 2023-05-31
关于印发《宁夏回族自治区科技成果转移转化示范基地和示范企业管理暂行办法》的通知
为加快培育科技成果转移转化示范基地和示范企业,加速科技成果转移转化,形成科技成果转移转化示范效应,提高科技成果转化和产业化水平,根据《关于实施科技强区行动提升区域创新能力的若干意见》(宁党发〔2022〕4号)、《关于促进科技成果转移转化的实施意见》(宁政办规发〔2020〕15号)精神,现将《宁夏回族自治区科技成果转移转化示范基地和示范企业管理暂行办法》印发给你们,请遵照执行。
宁夏回族自治区科学技术厅 2023-03-02
市科委等七部门关于印发《上海市科技成果转化创新改革试点单位名单》的通知
为贯彻党的二十大精神,按照十二届市委三次全会部署,市科委等七部门印发了《上海市科技成果转化创新改革试点实施方案》,经研究共同确定了《上海市科技成果转化创新改革试点单位名单》。现印发给你们,请各试点单位加强组织实施、细化试点任务、强化支撑保障,抓紧开展试点工作。
上海市科学技术委员会 2023-11-06
一种测定甲胎蛋白的电化学免疫传感器及其制备方法与应用
本发明公开了一种测定甲胎蛋白的电化学免疫传感器及其制备方法与应用,基底电极由MWNTs?CS溶液修饰,甲胎蛋白第一抗体溶液共价结合到修饰后的基底电极上,甲胎蛋白抗原溶液特异性结合到甲胎蛋白第一抗体上,CdTe@SiO2?GO?甲胎蛋白第二抗体溶液特异性结合到甲胎蛋白抗原上,所述基底电极为玻碳电极。本发明还提供了一种基于CdTe QDs信号放大的电化学免疫传感器的人血清中甲胎蛋白的检测方法,所述检测方法灵敏度高、特异性好、具有很宽的线性范围和较低的检测限且成本低廉。
东南大学 2021-04-11
东南大学化学化工学院变频磁热加热器采购公开招标公告
东南大学化学化工学院变频磁热加热器采购招标项目的潜在投标人应在东南大学采购中心网(https://dnzb.seu.edu.cn/)获取招标文件,并于2022年07月13日09点30分(北京时间)前递交投标文件。
东南大学 2022-06-21
王训教授在冰川退缩区重金属的生物地球化学循环取得新进展
近半年来,资源环境学院重金属的环境地球化学循环研究团队(负责人:王定勇教授)在冰川退缩区重金属的生物地球化学循环取得重大进展。 冰川退缩区是地球表层系统中最活跃、最富有活力的部分之一,冰川退缩区的矿物质丰富, 原生裸地植被演替迅速,土壤发育碳积累过程明显。冰川退缩区形成的植被演替序列,是研究陆地生态系统汞循环对全球气候变化响应机制的一个绝佳天然平台。王训教授在传统化学计量的观测研究基础上,联合天然汞同位素技术、年轮化学技术,详尽论述了汞、镉、铅等重要重金属污染物在海螺沟、明永及米堆等冰川退缩区的生物地球化学过程。 研究成果详细刻画了冰川退缩-植被演替过程中土壤重金属的来源、累积过程,对研究气候变化-植被格局-重金属生物地球化学循环的研究提供了一个经典的研究范例。特别是对汞的相关研究引起了国际通行的高度关注。
西南大学 2021-02-01
采用离子辐照增强PtPb/Pt二维纳米片电化学催化活性的实验成果
采用核技术方法,利用高能离子束辐照,对PtPb/Pt二维纳米片进行了原子尺度结构调控和修饰,极大地提高了纳米片的催化活性。在线辐照和原位透射电子显微镜(TEM)结果表明:通过入射高能离子与纳米片中靶原子相互作用,精确地控制纳米片微观结构的变化,利用键长变化和电子轨道杂化等机制来修饰表面原子的电子结构,从而增加催化反应活性位点,增强催化性能。同时,通过调节入射离子的剂量大小,可以有效地控制缺陷产生的数量及演化,得到具有不同催化活性的PtPb/Pt二维纳米片材料。
北京大学 2021-04-11
清华大学化学系罗三中团队创新开发手性分子合成新方法
清华大学化学系罗三中课题组在手性分子合成途径研究方面取得新突破,通过将有机小分子催化与光催化相结合,直接将手性分子从外消旋变为手性纯。
清华大学 2022-02-25
首页 上一页 1 2
  • ...
  • 100 101 102
  • ...
  • 107 108 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1