高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
新型煤泥分级调浆预
处理器
本设备采用特殊结构的水喷射乳化器乳化药剂,一方面达到分散乳化药剂的效果,另一方面使整个工作体系对操作者敞开,操作者可以清楚了解设备的工作情况,方便操作。跌落箱上的滑板带有坎条,对煤浆中粗、细颗粒有不同的接触预处理时间,在第一层和第四层滑板出料口,创造性的设计了“人”字形挡板,对粗、细粒级进行分级,进一步加大了粗、细粒级在预处理器中停留时间上的差异,消除高灰细泥的影响,使煤粒表面形成足够的、稳定的油膜,为煤浆预处理创造良好的工艺条件。专利号:分级跌落式煤浆预处理装置 2013101819576;基于跌落式煤浆预处理器的浮选剂进料系统 2013202695010;煤浆预处理器2013202495989。
安徽理工大学
2021-04-13
基于
神经网络
的智能无人机疫情预警监控系统
目前北京理工大学基于神经网络的智能无人机疫情预警监控系统主要由无人机平台、光电载荷、喊话系统和地面控制及图像处理平台组成。 该智能无人机疫情预警监控系统能够自动监控广场、公路、小区等各类环境中的人群,检测人员聚集情况,利用红外热成像技术实时获取人员体温情况,实现在非接触情况下对疑似高危人员的快速区分,并快速形成疫情人员相关数据,还可以提供数据接口,供大数据系统进行分析。该智能无人机疫情预警监控系统可同时提供监控人员及被监控人员交互通道,通过喊话系统,监控人员可以随时疏导或制止被监控人员的异常行为,为疫情监控和预警提供了更为清晰和直接的手段方式。
北京理工大学
2021-04-10
关于应用
神经网络
对核裂变产物的研究进展
原子核裂变数据的精确测量是很多核物理应用的先决条件,比如核能、国防、辐射防护、核废料处理、产生稀有同位素等。核裂变物理在超重元素合成、反应堆中微子、中子星融合中的r-process等研究中也不可缺少。特别是走向新一代核能-快中子反应堆,急需锕系核区精确的不同能量中子诱发裂变数据。但是目前实验和理论都无法提供可靠及完整的能量相关裂变数据。 由于涉及中子的实验难度较大,国际上主要的核数据库只有几个能量点的裂变数据。理论上基于微观模型去描述裂变过程非常复杂,是一个涉及多维位能面的大幅度、非绝热的量子动力学过程。目前微观理论对裂变可观测量的描述还有较大误差。 此外基于唯象裂变模型对未知核区和未知能区的外推往往不可靠。 北京大学物理学院裴俊琛研究员课题组首次采用贝叶斯神经网络(Bayesian Neural Network)来评估不完整的裂变产物分布。此前贝叶斯神经网络对原子核质量外推有一些成功的应用,并可以得出推断的误差,但是仍有量子壳效应的疑虑。核裂变过程涉及复杂的位能面,裂变产物分布具有统计特征,比较适合神经网络。 贝叶斯神经网络对不完整核裂变产物的评估 目前核裂变产物的实验测量很难给出完整的产物分布,只能结合模型评估给出完整的裂变产物分布。人们通常基于唯象模型、通过调参数来拟合出产物分布。该工作通过对已有裂变数据库的学习,当实验测量给出不完整的裂变数据时能够推断出完整的裂变产物分布。结果表明,随着中子能量增加,裂变模式逐渐从不对称裂变演化成对称裂变。这说明神经网络能成功抓住部分物理图像。当实验数点很少时,唯象评估模型失效,神经网络仍然可以给出有效的评估和合理的置信区间。贝叶斯神经网络对核裂变产物的评估开辟了一个新的方向,展现了机器学习的一个实际应用范例,将对核数据的定量评估产生重要影响,有望更好地提供应用级的精确核数据。 不同能量的裂变模式演化
北京大学
2021-04-11
基于计算机视觉和
神经网络
的浮选控制系统
浮选技术是目前矿业中矿物分选主要采用的工艺方法。传统的浮选控制过程是通过各种测量仪器,分析测量矿物的品位、浮选回路中的pH值、药物浓度等参数,根据分析得出的数学模型来调整加药量,以使浮选过程处在最优状态下。但实际上,由于浮选过程十分复杂,影响浮选过程的因素非常多,所获得的数学模型并不能和实际很好吻合,因而控制过程一般并不能处在最优状态下。这是浮选控制过程的
西安交通大学
2021-01-12
一种反馈型人工
神经网络
训练方法及计算系统
本发明公开了一种反馈型人工神经网络训练方法及计算系统, 属于神经网络计算领域。一种人工神经网络训练方法,突触权重根据 神经突出两端的前馈信号和反馈信号调整,当神经突出两端分别为兴 奋前馈信号和兴奋反馈信号时,该突出权重调整到最大值,当神经突 出两端分别为静息前馈信号和兴奋反馈信号时,该突出权重调整到最 小值;一种反馈型人工神经网络计算系统,节点电路包括计算模块、 前馈模块和反馈模块,节点电路通过忆阻器模拟的神经突出相
华中科技大学
2021-04-14
一种基于 RBF
神经网络
的电缆接头导线温度预测方法
本发明涉及一种基于 RBF 神经网络的电缆接头导线温度预测方法。本发明主要分以下 4 个步骤:1) 样本数据采集:实时测量与电缆接头导线温度有联系的关联因素(环境湿度、环境温度、护套温度、接 头处绝缘层温度、触头温度和各种表皮温度);2)网络训练:首先对 1)采集的数据进行预处理,划分 训练数据和预测数据,然后设置各种参数,创建网络,最后进行数据预测;本发明将神经网络技术应用 到电缆接头导线温度预测中,对电缆接头导线温度在线实时监测与故障分析有较好的作用。
武汉大学
2021-04-13
一种基于动态哈密顿积的
神经网络
实现方法
一种基于动态哈密顿积的神经网络实现方法,其特征在于,包括以下步骤:首先,设计输入特征驱动的动态核生成机制,根据样本特性自适应调整卷积核参数,实现多尺度、多方向特征的细粒度提取,充分发挥四元数表示的空间感知优势;其次,构建符合四元数几何特性的整体激活函数,通过超复数空间中的非线性变换保持通道间旋转缩放关系,避免传统分量式激活导致的关联性断裂。本专利提出的动态卷积根据输入样本的特征动态生成卷积核,使得网络能够针对每个输入样本动态调整其卷积核。这种灵活的调整机制不仅增强了模型的表达能力,还使其能够适应不同输入的特征,提取更具细粒度的特征。
复旦大学
2021-01-12
基于多元数据增强超图
神经网络
的抗癌药物协同预测方法
本发明公开了一种基于多元数据增强超图神经网络的抗癌药物协同预测方法,涉及生物医学数据挖掘领域,该方法包括将包含全部的药物‑药物‑细胞系三元组数据集分为第一集合和第二集合,然后执行训练阶段和测试阶段;所述训练阶段用于基于第一集合得到分子图的药物结构数据,以及细胞系的基因表达数据,进行嵌入的学习并完成对协同效应预测器的训练;所述测试阶段用于基于第二集合得到分子图的药物结构数据,以及细胞系的基因表达数据,进行嵌入的学习以获得节点嵌入,并根据获得节点嵌入和训练完成的协同效应预测器完成预测。本发明不仅可以帮助临床医学发现用于癌症治疗的新型协同药物组合,而且能够助力发现抗癌药物协同作用的潜在机制。
华中农业大学
2021-04-11
基于
神经网络
模型BP算法的嵌入式矿压检测方法
本发明公开了一种基于神经网络模型 BP 算法的嵌入式矿压检测方法法,首先根据根据待检测区域的地域情况,采用多个振弦式压力传感器进行测量;然后 ARM7 处理器根据系统任务个数建立相应的进程;最后在建立的任务中打开定时器,输出一个固定在某一频率范围内的脉冲,经过驱动激振电路,产生一个能对振弦式压力传感器内部振弦起振的信号,同时使用 ARM7处理器对振弦式压力传感器返回的脉冲信号进行频率测量,计算得到压力值,最后,利用温度传感器采集振弦周围区域的温度,采用 BP 算法建立神经网络模型,利用神经网络模型对得到的各组压力数据及采集的温度数据进行学习,并根据神经网络模型找出压力随温度的变化规律,对振弦式传感器进行温度补偿。
安徽理工大学
2021-04-13
认知无线电中基于SOM
神经网络
的恶意用户判别方法
本发明公开了一种认知无线电中基于自组织映射神经网络的恶意用户判别方法,本发明利用自组织映射(简称SOM)神经网络学习输入能量矩阵的分布特征,并根据学习结果对输入量进行有效的分类。首先引入“可疑度”的概念,其大小根据每次训练后每种类别所包含的次级用户的个数进行分配。为了消除传统的SOM神经网络的缺陷,本发明进一步提出了“平均可疑度”的概念。具体步骤包括:获得能量矩阵,利用SOM神经网络算法对能量矩阵进行训练得到分类矩阵,计算每个次级用户的“可疑度”,构造索引矩阵并重复训练过程,并将每次得到的“可疑度”取平均值,即“平均可疑度”,并利用“平均可疑度”对次级用户进行分类,识别出恶意用户或是正常用户。
东南大学
2021-04-11
首页
上一页
1
2
3
4
5
6
...
444
445
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果