高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
半干法-湿法耦合型垃圾焚烧尾气污染物超低排放技术
垃圾焚烧烟气具有高污染性和成分复杂性,开发高效的垃圾焚烧尾气净化技术与工艺受到国内外研究者的高度重视。本技术成果包括:(1)新型锥形半干法喷雾脱酸塔构建;(2)廉价吸附剂开发及吸附剂喷射装置优化;(3)垃圾焚烧炉内SNCR脱硝优化及炉后低温SCR脱硝联合脱硝;(4)半干法-湿法耦合型垃圾焚烧超低排放净化系统集成。该成果获教育部科技进步二等奖。
东南大学 2021-04-11
一种医疗垃圾焚烧飞灰微波烧制多孔陶粒的方法
本发明公开了一种医疗垃圾焚烧飞灰微波烧制多孔陶粒的方法,包括如下步骤:(1)将医疗垃圾焚烧飞灰与辅料充分混合,混合物中加入少量水并经成型机造粒成型;(2)造粒成型并干燥得到颗粒生料,在颗粒生料周围填充微波耦合剂粉末;(3)将填粉后的颗粒生料进行微波烧结,烧结后冷却至常温得到多孔陶粒。本发明能够借助飞灰中高含量活性炭在微波场中的“热点”效应将飞灰中二恶英即时彻底分解,同时将大部分重金属包裹固化在烧结产物网格中,并将飞灰快速烧结成多孔陶粒,该陶粒可用于建筑集料或废水滤料,在实现医疗垃圾焚烧飞灰无害化处理的同时进一步将其资源化利用,一举多得。
天津城建大学 2021-04-11
一种遥感影像圆形油罐自动检测方法
本发明公开了一种遥感影像圆形油罐自动检测方法,首先,对遥感影像进行 MHC 视觉显著变换得 到视觉显著图,再经过数学形态学增强,得到增强视觉显著图,利用 hough 变换在增强视觉显著图上圆 检测,得到疑似油罐区域;然后,对遥感影像进行 turbopixels 过分割,根据特征合并分割块,根据似圆 特征,得到疑似油罐区域;最后,结合由 hough 检测结果和似圆特征检测结果,利用油罐圆心与半径关 系和多特征进行 SVM 分类,过滤掉同心圆和非油
武汉大学 2021-04-14
中国高等教育学会召开2025年重点工作研讨会
1月6日,中国高等教育学会召开2025年重点工作研讨会,深入贯彻落实全国教育大会精神和教育强国建设规划纲要战略部署,聚焦“围绕中心,服务大局,解放思想,创新发展,为加快建设教育强国贡献更多智慧和力量”主题,理清发展思路,谋划重点工作,统一思想,凝聚力量。
中国高等教育学会 2025-01-08
声振温一体化监测诊断系统
从电器文明开始,短短一个世纪的时间,人类在科学探索的步伐上已经从工业进入了智能化的技术环境。随着物联网的发展,数据时代到来,各行各业也在争相抓住契机,利用新时代科技智能手段,帮助企业更好发展。其中,传感器技术的应用,为工业监测带来了新的惊喜。它在工业自动化系统的监测过程中,起到巨大作用,可以实时监测将监测到的信号经过转化后以数据的方式提供给人们,做到实时监测,确保工业自动化系统的正常运行。现阶段,监测工业机械运行一般使用振动传感、温振一体化传感器等,存在成本高、易误报、不能对早前故障进行监测等问题;而故障早期诊断对于维护设备安全、保障工业体系正常运转具有重要意义。 针对现有故障监测系统存在的问题,团队开发了基于声纹、振动、温度一体的声振温一体传感器,该传感可综合感知监测对象声音、振动、冲击脉冲、温度以及倾角数据,全面覆盖旋转设备早中晚期故障信息。同时,开发了旋转设备声振温一体化监测诊断系统,其由有线/无线声振温一体传感器、采集网关、电脑 WEB 端构成,同时适配云平台、手机端小程序。通过有线/无线声振温一体传感器将设备运行时的冲击脉冲、三轴振动、噪声、温度数据采集传输至数据库服务器,依托独有的异音分析、健康因子指标专利算法,实现设备状态实时监测与故障诊断。 核心优势: (1)全面集成冲击脉冲、三轴振动、声音、温度多维度深度感知专利技术; (2)快捷部署(磁吸胶粘/纹可选),无线方式,快速联网; (3)数字信号传输,抗干扰能力强准:独有异音、健康因子指标专利算法; (4)高性价比,大容量电池,长维护周期。
西安交通大学 2025-02-08
安徽大学农业大数据中心翁士状、郑玲副教授团队在农业传感遥感领域取得系列进展
在智慧采摘方面,提出了一种结合检测网络与点回归的新型方法,为葡萄采摘自动化提供了高效精准的解决方案。
安徽大学 2025-02-11
生物炭暨秸秆炭化综合利用技术研究与应用
针对秸秆直接还田难、综合利用率低、焚烧污染严重,土壤碳库匮缺、耕地质量提升乏力等“老、大、难”问题,沈阳农业大学率先提出了“秸秆炭化还田”新理论,确立了“以生物炭为核心,以炭化技术为基础,以生物炭基肥料和生物炭基土壤改良剂为主要发展方向,兼顾能源化利用”的技术路线。2005年以来,围绕“生物炭暨秸秆炭化综合利用技术研究与应用”,项目组先后突破了生物炭规模化制备与农业应用关键技术,构建了全产业链技术体系,推动了成果高效转化,为秸秆间接还田开辟了一条新途径。    1. 研发出“半封闭式亚高温缺氧干馏炭化工艺”和“组合式多联产生物质快速炭化设备”,突破了秸秆“低成本、大批量制炭”的产业技术瓶颈。该工艺设备对原料适应能力强、生物炭生产效率高、能耗低,有效解决了农作物秸秆密度低、含水量高、预处理能耗大、炭化效率低等问题。所制备的生物炭含碳量高、孔隙丰富,可广泛用于土壤碳封存、农田温室气体减排、化肥减量增效、耕地质量提升等领域。    2. 开发出生物炭基肥料等系列生物炭基农业投入品,集化肥减量、土壤改良、节本增效等功能于一身,寓土壤改良与土壤利用之中,突破了生物炭规模化田间应用技术瓶颈。综合运用作物学、土壤学、植物营养学、微生物学、生物信息学等方法,系统揭示了生物炭固碳、改土、保肥、持效、促生作用规律与机制。在此基础上,遵循养分归还学说和农田生态系统物质循环规律,发明了以生物炭为载体生产专用肥料、土壤改良剂、水稻育苗基质的技术与方法,开发出以生物炭基肥料为代表的系列生物炭基农业投入品,能够在不增加农民生产成本的情况下实现秸秆间接还田,解决了生物炭直接还田成本高、推广难、市场化程度低等问题,打通了生物炭规模化田间应用“最后一公里”,改变了化学类缓控释肥料只减肥、改土作用不明显、只在当季起作用的局面。    3. 开展了大规模试验示范,构建了“分散制炭、集炭异地深加工”产业模式,实现了成果转化。针对集中处置利用与秸秆等农林废弃物分布广、收储运困难之间的矛盾,构建了“分散制炭、集炭异地深加工”产业模式,将产业链中的运输成本降低约 70%;制定了《生物炭基肥料》农业行业标准并首次发布,突破了制约生物炭技术产业化和行业健康发展的“瓶颈”问题。    截至 2016 年底,项目技术累计推广 1090.2 万余亩,辐射全国 20 余个省(市、自治区)。其中,2014-2016 年,项目技术推广应用 575 万亩,新增销售额 19665.6万元,新增利润 2359.9 万元,节支增收 42890.9 万元。合计新增经济效益 45250.8万元。
沈阳农业大学 2021-05-04
农作物秸秆原料生产化工二元醇成套技术
乙二醇和丙二醇等化工二元醇主要用于聚酯树脂、防冻液以及粘合剂、油漆溶剂、耐寒润 滑剂和表面活性剂等的生产。目前绝大多数的化工二元醇是通过氢化裂解石油基底物或粮食基 葡萄糖得到的,面临着化石原料的日益枯竭和粮食安全等重大战略问题。利用丰富的、开再生 的农作物秸秆生产乙二醇和丙二醇等化工二元醇,是木质纤维素生物炼制的重要方向。本技术 的产业化实施将对传统农业的可持续发展和产业更新换代具有重大的提升作用,并大幅减少因 秸秆焚烧带来的雾霾等大气污染因素。然而,高额生产成本严重阻碍了本技术的产业化进程。 秸秆化工醇的生产成本具体表现在过程的高能耗和高废水排放上。 本项目的农作物秸秆原料生产乙二醇和丙二醇等化工二元醇成套技术采用华东理工大学研 发的干法生物炼制技术。该技术主要包括干法稀酸预处理、高固体含量酶促糖化和秸秆糖连续 加氢裂解等主要工序。其中,干法稀酸预处理技术使用新型的螺带搅拌式预处理反应器,实现 了过程零废水排放,新鲜水和蒸汽用量比典型的预处理技术降低80%以上;高固体含量酶促糖 化技术则通过自主研发的螺带型反应器处理固含量达20%以上的秸秆底物酶解,可得到糖浓度 高于10%的秸秆糖化液;秸秆糖连续加氢裂解技术则实现了化工二元醇生产过程的连续化和催 化剂的循环利用。通过该成套技术可以得到不低于20%(w/w)浓度化工二元醇的裂解液,纤 维素转化率达75%以上。本技术的实施将会大大降低纤维素化工醇的生产成本,为纤维素化工 醇的产业化奠定基础
华东理工大学 2021-04-11
一种用黄蜀葵秸秆制备塑木材料的方法
【发 明 人】陈佩东;段金廒;严辉 【摘要】 本发明公开了一种用黄蜀葵秸秆制备塑木材料的方法,它包括黄蜀葵粉末的制备,电辅加热高速混合,除湿、造粒,挤出和加工成型等步骤。本发明提供的用黄蜀葵秸秆制备塑木材料的方法,工艺设计合理,可操作性强,根据黄蜀葵的纤维特征和理化性质,优选出制备工艺,制备得到的塑木,强度高,握钉力强,并且木质纤维含量高,抗冲击强度高,环保性高,是一种优良的塑木材料。并且本发明原料为中药废弃物,生产成本较低,原料中植物纤维长、含量高,可将废弃资源回收再生化,产品冲击强度等物理性能提高,使用寿命延长,具有重要的经济效益和社会效益。
南京中医药大学 2021-04-13
秸秆全营养平衡精简还田改土增肥减损增效技术
在快速诊断土壤-作物养分供应状况的基础上,根据秸秆还田数量提供精准配肥方案及配套肥料产品,保障秸秆还田后所有作物必需营养元素处于相对平衡供应状态, 结合基础地力和作物目标产量,整合、优化作物栽培技术方案,并开展实时实地科学调控,确保作物在不限量秸秆还田条件下土壤综合肥力性状改善、作物养分吸收利用效率提高、土壤及肥料养分损失减少,最终实现作物生产的可持续高产、高效。
扬州大学 2021-04-14
首页 上一页 1 2
  • ...
  • 9 10 11
  • ...
  • 78 79 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1