高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
泥沙颗粒输运背后的力学机制
地球表面高山、丘陵、沙漠、河流、潮滩等地貌形态万千,它们是如何在历史的岁月中逐渐形成的呢?放眼宇宙,空气密度极低的冥王星,是如何神奇地拥有丰富的沙丘地貌?被称为沙漠行星的火星会因为大风而刮起沙尘暴吗……这些自然界中的奥秘正是地球物理学科的泥沙运动力学所研究的问题。已有的研究告诉我们,泥沙颗粒输运普遍发生于大气环境和水环境中,是塑造地貌形态最重要和最根本的自然过程之一。如何理解和定量描述地表环境泥沙颗粒的起动、输运和沉降是揭示地貌形态千差万别的核心问题。目前野外和实验数据已经证明,粗颗粒泥沙输运量与流体强度之间的关系,在大气环境表现为线性,在水环境表现为非线性。然而,如此截然不同的输运规律背后的力学机制却一直还是个迷。近日,浙江大学海洋学院百人计划研究员托马斯·派兹(Thomas Pähtz)博士成功揭开了这个谜底,并推导出了描述粗颗粒泥沙输运量与流体强度关系的通用方程。北京时间2020年4月20日,相关研究成果在物理学学术期刊美国物理学会刊物《物理评论快报》(Physical Review Letters,简称PRL))上发表,并被该刊物和杂志Physics同时聚焦报道。通过离散元(DEM)精细数值模拟追踪大量泥沙颗粒的运动轨迹并分析其受力特征, 托马斯·派兹首次发现,粗颗粒泥沙的动能耗散机制主导其输运规律。大气环境条件下颗粒和床面间碰撞是主要的耗散机制;而在水环境条件下,颗粒和床面间碰撞以及颗粒之间的碰撞起着同等重要的作用。根据这一新的理论认识,托马斯·派兹推导了能统一描述大气环境和水环境粗颗粒泥沙输运量与流体强度关系的通用方程。这为深入认识地球甚至火星等外星球表面丰富多样的地貌形态提供了有力的理论工具。 统一输沙率公式与水环境(左图)和大气环境(右图)相关实验资料对比“最困难的部分是对模拟的结果进行物理解释和数学描述。在总共7年的时间里,我无数次地用笔和纸进行尝试。特别是在最初的4年里,我大部分时间都在思考这个问题。” 托马斯·派兹说。评审专家认为,这项研究工作是地球物理学科最基础而没有被揭示的问题。而对于未来的进一步应用,托马斯·派兹表示,上述通用方程可以预测任意大气/水体环境下的泥沙输运量,这使我们能够更好地了解这些天体的地貌,还可以通过测量行星的动力地貌来间接推断行星的风况。据悉,托马斯·派兹于2020年1月起受邀担任美国地球物理学会会刊《地球物理学研究杂志-地表过程》的副主编。他是浙大近海环境流体力学团队的重要成员。该团队由贺治国教授领衔,主要从事近海泥沙动力学、海岸动力学、近海环境流体力学等方面的研究,成果已逐步应用于理解河口海岸泥沙运动、深水航道整治、深海地貌演变、深海热液源矿物颗粒沉积等问题,取得了重要的国际影响力。该研究得到国家自然科学基金和浙江大学百人计划研究基金资助。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.168001
浙江大学 2021-04-11
颗粒行为与多相流动数值模拟
上海理工大学 2021-01-12
利用大鼠实时预警空气毒性技术
呼吸是人类的最基本生理需求。然而,空气污染物的存在往往使这一基本需求难以得到保障。更有甚者,在一些特殊环境场所,空气中可能存在高致病微生物如病毒和细菌、生化毒剂、毒素等严重危害人体健康甚至威胁生命。此外,空气中也可能存在一些未知的有毒物质,如不明病原体、化学物质等。目前已有的空气安全预警技术主要针对有限的几种污染物或者有毒物质进行实时监测,无法覆盖包括生物与化学威胁在内的所有潜在威胁。空气中的污染物种类繁多,理论上很难发展一种同时监测上千种污染物的仪器设备。另外,空气毒性安全预警技术需要对空气毒性做出快速响应,以便为采取防御措施争取宝贵的时间。这些要求都是对当前技术的极大挑战,很难实现对空气的综合毒性的实时预警。
北京大学 2021-02-01
粉煤空气化制备燃气新技术
华东理工大学与浙江联顺筑养实业集团有限公司共同承担的国家863计划项目课题“粉煤 空气气化制备燃气新技术开发”,依托浙江联顺筑养实业集团有限公司,开发具有完全自主知 识产权的日处理75吨煤级、低成本和全热回收粉煤空气气化制备燃气新技术。该技术具有煤种 适应性强、流程简单和开停车操作方便等特点和优势,该技术主要特点包括: (1) 气化装置开停车时间短,操作简单,安全性高; (2) 碳转化率高,燃气中飞灰含量低; (3) 连续、稳定、准确和可控的高含水量中等固气比粉煤输送。 171资源与环境工程学院科技成果 172 (4) 采用空气气化,省去了昂贵的氧气制备系统。 (5) 气化工艺洁净,环境友好。 建成日处理煤量75 吨粉煤空气气化示范装置,以神府煤为原料基准,采用富氧空气,气 化压力常压,气化装置实现8小时连续运行,达到的主要技术指标为: (1) 空气煤比≤3100Nm3 空气/1000 kg煤; (2) 有效气成分CO+H2+CH4≥38%; (3) 碳转化率≥94~96%; (4) 燃气高热值≥5000 kJ/Nm3;
华东理工大学 2021-04-11
新型光触媒型空气清新剂
目前由于建筑、装饰和家具造成居室内空气污染严重危及人们身体健康,其污染物主要为甲醛和苯系物。室内空气的污染越来越引起人们的关注,而关于空气清新剂的制备与成为许多学者研究的热点。其中纳米级光触媒作为一种新型的无机材料,具有光催化活性,能利用太阳光催化降解很多有毒、有害的物质(如:室内装饰用的人造板,地毯等合成织物,化妆品、清洁剂、杀虫剂、防腐剂的使用也能释放出甲醛、苯系物),具有广阔的应用前景。纳米级光触媒作为空气净化材料可有效地降解室内外有机污染物,氧化除去大气中苯系物、甲醛等污染物。若用阳光作为光源来激发反应发生,大约一星期能消除空气中的苯系物、甲醛等污染物;若用紫外光作为光源来激发反应发生,大约两天能消除空气中的苯系物、甲醛等污染物,效果理想。更有价值的是该产品可加工成各种形态,便于包装和使用。例如:可制成薄膜贴附于车窗上,用于消除车内空气的污染。该产品生产成本较低,在目前家装、购车非常热门的时期,尤其具有商业价值。
武汉工程大学 2021-04-11
高效、节能空气除湿及干燥技术
本项目是空气除湿干燥技术领域的一项新技术。通过利用高效的空气干燥剂、有效的冷却和水分离等措施,大幅度提高常压空气和高压空气的除湿性能。该空气除湿技术与传统的低温露点空气除湿和高温热能驱动的空气除湿技术相比,具有明显的节能、环保效果,与传统的制冷空调系统结合,可以形成新型的节能、高效、空气品质优良的空调系统。 应用范围:太阳能/余热利用、高压气源干燥、空气除湿等。 应用效果:显著提高空气除湿器效率、节约能源、降低费用。
北京航空航天大学 2021-04-13
建筑火灾防烟空气幕
高层建筑火灾时通常采用的防、排烟方式是设置挡烟垂臂、机械加压送风、机械排烟方式,这种方式一方面不利于老人儿童等弱势群体的快速疏散,另一方面加压送风输送的新鲜空气对火灾进一步发展有较强的助推作用,而防烟空气幕可以克服以上防、排烟方式的缺点。本项目通过确定火灾时影响烟气流动的因素,分析烟气流动特性,在此基础上,建立烟气流动数学模型及空气幕射流流动数学模型。通过计算机仿真研究、实验研究验证和完善理论研究数学模型,完成防烟空气幕结构设计。确定防烟空气幕的基本型式和结构设计的计算数学模型,在理论和实验的基础
南京工业大学 2021-04-14
空气纸片甲醛快速检测仪
1、成果简介:(500字以内) 研制出空气纸片甲醛快速检测仪。通过干化学、纸层析、光反射技术,实现了甲醛样品快速采集、吸收、显色一体化,免液体试剂现场检测。通过干化学试纸和专用检测模块系统,借助特异显色剂与甲醛反应及纸上层析反射法,实现甲醛的快速定量检测。突破传统甲醛检测技术,避免传统检测需现场采样、实验室检测、溶液反应等繁琐操作,研究集样品吸收、层析、显色一体化干化学试纸创新性技术,将干化学试纸层析和反射光度法集成,通过特异性显色剂与甲醛反应,反射光度法测量实现空气中甲醛的现场快速定
吉林大学 2021-04-14
溶液式空气除湿机组研发
成果简介溶液除湿是指采用具有除湿功能的盐溶液作为介质, 如溴化锂、 氯化锂或氯化钙等盐溶液, 对空气进行除湿。 被处理空气的水蒸气分压力与吸湿溶液表面蒸汽压之间的压差是水分传递的驱动力。 与现有除湿方式(转轮除湿、 冷凝除湿)相比, 溶液除湿具有可以充分利用低品位的“废热” 和“余热” 能源"、 可以实现较高密度的能量蓄存、 提供更好的室内空气品质等显著优点。 溶液除湿可用在高炉鼓风、 生物制药等需深度除湿的工艺过程中、 对湿度要求高的洁净室以及温湿度独立控制的空调系统中
安徽工业大学 2021-04-14
自清洗长寿汽车空气滤芯
中试阶段/n本项目采用表面氟化处理技术制得低表面能基材,采用溶剂诱导结晶相分离技术实现微纳米结构,采用本体抗变形可冲洗滤芯专利技术,构成的自洁型超细纤维汽车空气滤芯,比现有纸质滤芯寿命提高5-10倍,燃油得到充分燃烧,发动机输出功率增加,有害尾气排放减少。本项目的关键技术还可用于不沾灰-不沾水服装面料、自洁建筑材料、船舶防污涂料等领域。主要技术指标:透气度(200Pa):509mm/s;原始阻力(额定流量220m3/h):≤1.3KPa;总成滤清效率(初始):η≧99.5%;总成试验寿命:≧20h
湖北工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 26 27 28
  • ...
  • 186 187 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1