高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高性能卫星调制解调系统
(一)项目背景 党的十九大明确提出了建设航天强国的战略目标,我国航天事业获得了巨大发展动力,商业卫星市场不断壮大,未来必将产生一个巨大的卫星数据服务市场。其中数传链路系统和设备是卫星航天产业的基础技术之一,它将航天遥感遥测数据从模拟信号中的信息提取出来以供使用。目前国内有能力进入卫星解调市场的厂家并不多,主要有:中国空间技术研究院、北京遥测技术研究所、中国电子科技集团第五十四所和清华大学等,并且都位于我市之外,无助于我市航天产业发展战略。 目前卫星通信设备生产单位均采用法国 IN-SENC 公司的高速数据接收设备的技术路线,国内市场上现有的卫星数传链路调制解调设备也都采用FPGA 设计专用电路实现,存在成本高、设计实现复杂和通用性差等问题;并且设备的性能依赖于 FPGA 器件的制造工艺和资源规模,无法满足卫星数据传输速率的快速增长需求;此外,卫星数传链路设备多采用的高端 FPGA芯片长期依赖进口,芯片禁运政策导致诸多问题。另一方面,本项目属于移动通信相关设备制造行业,是卫星产业中的关键部分。戚发轫院士介绍中国未来卫星事业发展将走向“一大一小”两个方向。“大”是指未来的卫星将越来越大,通信能力更强;“小”是指未来将会涌现更多重量较轻的卫星,它们功能专一,但可以形成一个卫星网络。而现阶段卫星数据解调设备研制目前采取的方式仍然是向传统的设备生产厂商定制产品,生产能力有限且成本昂贵,无法匹配卫星产业快速发展的需求。 图 1 卫星地面处理与检测系统工作展示 作为卫星技术非常重要的一部分,调制解调技术的发展经历了由模拟实现到数字实现、从专用硬件芯片实现到软件定义无线电软硬件结合实现。 本项目基于 GPU 平台研究的全软件卫星解调设备可充分发挥软件实现的灵活性及可扩展性的优势,符合卫星产业向着智能化、灵活化、通用化的发展趋势。本项目的研究的卫星解调设备支持多种调制方式,全软件的开发平台可可大幅度降低地面接收设备的建设成本,缩短开发周期,提高产能,同时可以有效的规避禁运带来的各种风险,具有重要的战略意义。 (二)项目简介 针对我市发展航天产业的政策和国内外市场环境面临的新问题,本项目基于大规模并行计算技术和软件无线电技术研究开发一种新型全软件卫星数传链路系统,突破现有调制解调设备性能提升的瓶颈,既匹配“大卫星”的技术需求,同时全软件的设计又可有效降低成本,提高产能,符合“小卫星”市场对“量”的需求。总之,本项目将进行“软件定义卫星数传设备”及航天产业链电子信息软硬件系统的研发、生产、销售,产品将覆盖多种制式的卫星数据传输、地面测试和地面接收应用系统。 图 2 设备样机 (三)关键技术 本项目由高速并行载波恢复和并行时钟恢复技术实现高速率解调以及高速并行 LDPC 译码实现技术实现任意码速率、规则及非规则的准循环 LDPC译码。软件并行解调,costas 环和 gardener 环的 CUDA 编程实现高速并行载波恢复和并行时钟恢复技术,且同时实现解调、解密、译码三个流程。
西安电子科技大学 2023-05-19
空调通风系统工程
通风空调工程由通风系统和空调系统组成。通风系统由送排风机、风道、风道部件、消声器等组成。而空调系统由空调冷热源、空气处理机、空气输送管道输送与分配,以及空调对室内温度、湿度、气流速度及清洁度的自动控制和调节等组成。
新立讯科技股份有限公司 2021-08-23
中央空调 VRV 温控系统
中央空调 VRV 温控器,除具有节能效率高、环境热污染低、便于维护管理 等优点外,最大优势在于大量节省铜材资源和综合布线的人力资源。传统、常 规中央空调温控器对外连接线 9 根(AC-L、AC-N、高速驱动 H、中速驱动 M、 低速驱动 L、阀开 On、阀关 Off,共 7 根交流 AC220V 电源及控制线,2 根 DC 37 通信线),该专利产品仅为 2 线制 DC5V 的直流载波通信、供电模式,由于操 控面板上没有 AC220,所以也具备较高的用电安全性和防止不法用户的偷电行 为。 我们研发的中央空调 VRV 智能网络温控器是目前国内外性价比最高的一款 产品,采用该发明专利技术,成本降低 6 倍,功能优于国内外系列的 10 倍,且 工程项目安装方便,可节省大量人力、物力、线材的费用。
山东大学 2021-04-13
用于太阳能空调的板壳式溴化锂吸收式制冷机
高效、低成本太阳能空调的创新要点:1) 采用高效、紧凑的板壳式换热器组成溴化锂吸收式制冷机。具有优良强化传热性能的波纹板传热元件采用不锈钢材料,其耐腐蚀性能优于铜管,且材料单价较低,批量生产时,因材料消耗少可使成本比目前的铜管方案降低40%左右。2) 采用双效与单效耦合蓄能运行的循环方案。采用中温型太阳能集热器产生0.6MPa的水蒸汽,白天日照时段采用双效循环运行并进行蓄热,而在其余时段利用蓄热按单效循环驱动制冷机运行。该方案不仅效率高,日平均当量制冷性能系数可达0.8~1左右,而且其单位体积蓄能罐的蓄能密度极大,可实现无需用辅助能源而完全靠太阳能进行昼夜空调。3) 建设太阳能空调和热水站综合系统,在居民住宅楼的屋顶布置太阳能集热器阵,建设全年供应全体住户生活热水的太阳能热水站和夏季供应顶一、二层住户空调冷水的综合系统;若结合地源水低温热源系统则可建设吸收式热泵系统用于冬季采暖。由于综合利用系统中集热器的投资费用被所有热水用户分摊,空调用户的投资可很快从节省的电费中得到回收,该综合系统可在目前的技术水平和能源价格下使太阳能空调获得良好的经济效益。并为太阳能热水器的发展开拓了更大的空间。23kW(2万kcal/h) 用于太阳能空调的双效与单效耦合型板壳式溴化锂吸收式制冷机。
东南大学 2021-04-10
制冷制热
产品详细介绍
浙江余姚东南科教仪器设备有限公司 2021-08-23
 GC-12E型地铁车站通风与空调模拟系统
地铁车站局限性、在满足地铁车站通风空调系统基本功能的前提下,通过对地铁隧道通风系统和空调系统进行优化设计时,都要加入通风与排烟系统结全的模式
上海计呈教学设备有限公司 2025-05-27
洁净空调/净化空调
产品详细介绍对应洁净度等级为10,000-100,000的洁净室 超长冷媒配管(最大管长50米,高低差30米) 高效能涡旋式压缩机 能引入20%-25%的室外新风 广州瀛丰专业从事家、商用中央空调、恒温恒湿、净化空调、工业通风除尘、工业冷却、冷库、无尘室、 GMP 洁净、冰蓄冷、环保空调、水帘降温、水电安装工程的设计、制造、安装、运营以及机电设备的供应与系统集成的综合性机电安装工程公司。 服务范围:医院手术室、学校实验室、电子厂、电器厂、食品厂、医药厂等。
广州市瀛丰机电工程有限公司 2021-08-23
直升机空调系统成套产品
和西方发达国家相比,我国的直升机产业起步较晚发展较慢,目前我国各类直升机总保有量大约 3000~4000 架,而美国各类直升机的总保有量超过 2 万架。近 10 年来在国家政策的大力扶持下我国直升机产业得到了迅速发展,目前年总产量约 300~400 架。我国生产的直升机多数只在驾驶舱设置了空调,客舱基本都未设置空调,因此乘坐舒适性不佳,影响执行任务的安全性。现代直升机经常在恶略气象条件(高温、潮湿、海面、沙漠等)下飞行,因此对乘员舱安装空调的需求变得迫切。 
西安交通大学 2021-04-11
空调管道噪声预测系统—NoiseExpress
建筑设施内空调管道噪声控制与治理无论对于日常生活品质以及工业噪声污染都 是一个重要的课题,对于具体工程建设在设计之初就能获得较为理想的设计方案显得尤 为重要。传统空调管道的设计工作大多通过翻查大量数表及依照大量复杂的公式计算从 而获得其噪声自然衰减以及再生噪声的量级,最后将所有管道组件的衰减噪声及再生噪 声量进行统一,从而得出整个空调管道的噪声预测结果。此过程工作繁琐,大量的查表 及公式计算很容易出错,并且复查工作较为难进行,从而导致设计方案的周期较长,效 率低下。同时由于很多数表及公式的适用条件有限,大量新型材料的涌现很难在一些数 表中找到对应关系,这势必会导致设计方案存在误差较大的风险,难以把握空调管道噪 声的控制。 针对于上述情况,我们开发了空调管道噪声预测系统——NoiseExpress,首先其将 大量的参考数表数字化,公式程序化,设计者只需将空调管道个单元组件间结构规格及 物理构成通过程序相应的控件输入,最终便可以得出整个管道的噪声控制结果。同时本 系统集成了大量的空调管道各个单元组件如弯头、三通、变径管、静压箱、消声器等的 实测数据,丰富的数据库为管道设计,组件单元的设计及仿真提供了科学与现实依据, 大大提高了方案设计的精确度。
同济大学 2021-04-13
空调系统稳态仿真及节能控制
空调系统中,制冷剂的状态与流量、换热器的传热效率、压缩机特性、膨胀阀的节流特性等众多因素相互耦合,系统的一个稳定状态往往对应参数的多个解,于是寻找参数的最优解,实现系统最佳匹配与优化控制,成为节能控制的核心问题。基于最佳冷凝蒸发压差的控制策略,摆脱了单纯的过热度反馈控制模式,开发了基于流型与分区模型的空调系统稳态仿真模型和双联变制冷剂流量的制冷系统稳态仿真模型,通过仿真与实验验证,证明了该控制策略可以实现制冷空调系统的最优匹配,达到节能降耗的目的。
北京科技大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 550 551 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1