高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
热管换热器的研究与工业应用
成果简介: 1.一本专著(已发表) 庄骏, 张红. 热管技术及其工程应用[M]. 化学工业出版社, 2000.
南京工业大学 2021-01-12
炭质多孔材料的制备及应用
炭质多孔炭材料的可控制备及用于水处理及气体吸附。
上海理工大学 2021-01-12
新型纳米(复合)材料及其应用
近几年来,纳米材料的研究风糜全球,在高科技领域中有如下应用:光催化有机物降解材料;保结抗菌涂层材料;阻燃,抗紫外线材料;敏感器元件材料;复合材料的增硬增韧等,应用范围日益广泛。目前,我们能提供以下几种纳米材料的制备,应用和性能检测方法,如:二氧化钛,二氧化锌,二氧化铈等,这些氧化物的生产已达到批量(2公斤)以上,纳米二氧化钛能使树脂的硬度提高8倍,韧性也有很大提高。
厦门大学 2021-01-12
水射流清洗技术应用及装备
再制造行业已成为国家节约能源、缓解资源及环境危机、发展循环经济的 重要组成部分。再制造清洗是废旧产品进行再制造的首要环节,清洗质量的高 低严重制约再制造的后续工艺。 本项目为工业制造及再制造环节的清洗作业提供有效技术支持。根据高压 水射流清洗技术的流场分布、压力特性,结合不同被清洗物体的工作特点快速 选择清洗参数,达到高效清洗。另外,将磨料水射流与纯水射流技术进行有机 结合,克服了磨料水射流易污染原件及纯水射流压力过小的不足,更加高效地 结合两者优点进行快速、有效清洗。
山东大学 2021-04-13
中药膨化技术的应用研究
中药提取工艺相对落后已严重影响了中药质量及临床疗效,中药材质地坚硬,有效成分不易提出,溶媒需穿透植物细胞壁,依靠渗透压的作用提取出来,不能完全提取。中药材膨化技术是借助食品的膨化原理,结合中药材特点,对其进行科学处理的一种加工方法。其原理是将中药材置于膨化机中,随着加温加压的进行,中药材内部的水分子呈过热状态,当达到一定的高压后瞬间变成常压,中药材内部过热状态的水分子同时汽化而发生爆炸,巨大的膨化压力改变了中药材的外部形态和内部结构,使其膨胀疏松,形成海绵状空心网状结构 中药材膨化是中药材的深度加工,中药膨化后可明显提高药材利用率,减少剂量,避免浪费,缓解中药供需矛盾,保护中药资源;节省时间,提高效率,降低能源消耗和生产成本。该项目完成后,将彻底改变传统的中药汤剂而自成一体,形成中药制剂的新剂型——膨化剂。该剂型不需煎煮,只需用热水浸泡即可服用,简单易行,携带方便。膨化剂的研制,具有巨大的市场潜力,不论是经济效益,还使社会效益,都将是显而易见的。
西南交通大学 2021-04-13
纳米材料制备与应用技术
材料科学与工程学院在微纳米材料制备与应用技术研究方向上,以现有微纳米材料制备研究平台和有关研究课题为基础,在微纳米陶瓷、金属粉体制备及改性、纳米结构材料、大块金属纳米与非晶材料制备、高阻尼微纳米复合材料制备、纳米药物靶向材料研究等方面取得突破性的进展,实现了知识创新,形成了一系列专利技术。材料科学与工程学院院长许仲梓教授和赵石林教授主持承担的江苏省科技厅项目——“纳米透明功能涂料的研制与开发”,在我省的科技成果推广应用成效显著。该项目以半导体纳米材料为功能填料,制备出的涂料价格适中、性能优良。可将涂料在自动化生产线上涂覆于玻璃的表面,一次性制成纳米隔热玻璃,用于汽车、各类建筑物上,不仅具有良好的透明性(可见光区透过率>80%),而且能有效的隔绝太阳热辐射(近红外区屏蔽率>63%),具有很好的节能效果,同时涂料本身是一种环境友好的水性涂料。该项目填补了国内空白,其技术指标达到国际先进水平。常洲晨光涂料有限公司投资1000万元建设一条年产100吨纳米透明功能涂料的生产线及实验检测中心,实现了工业化生产,并得到了市场的认可。目前课题组正研发系列产品,以满足环保和节能的社会需求。由郭露村教授主持的江苏省高技术研究重大项目研制的纳米陶瓷弹簧,是以纳米改性PSZ粉料为原料,利用复合成型技术制备而成。陶瓷弹簧具有重量轻、耐磨损、抗老化、耐高温、电绝缘、无磁性等特点。主要技术指标:簧丝直径:2.2±0.1 mm;弹簧外径:20.4±0.3 mm;自由高度:24±0.5 mm;间距:1.7±0.1 mm;工作圈数:6;弹簧刚度:10±2 N/mm;最大荷重:50 N;重量:8.8±0.5 g。主要应用于无法使用金属弹簧的高温、腐蚀性环境中,用作缓和冲击、吸收振动以及控制机构运动的零件。水泥材料节能减排关键技术材料科学与工程学院是国内水泥科学研究领域的领头单位,以唐明述院士领衔、许仲梓教授、沈晓冬教授为领军人物的学术团队,在混凝土耐久性研究、高性能水泥制备基础研究、水泥绿色制造、建筑节能材料、资源综合利用等领域取得了一系列重大的科研成果。唐明述院士历经五十年潜心开展的“混凝土碱-集料反应耐久性研究”,在反应机理、集料碱活性快速试验法(被确定为国际标准)、反应防治方法及工程建设应用等到方面取得了被国际同行评价为具有里程碑意义的成果。多年来,研究成果为我国三峡工程、长江二桥、金沙江的向家坝、雅砻江上世界最高的大坝(305 m)锦屏一级电站等数十个国家重大基建工程项目提供技术支撑。先后获得国家自然科学二等奖、国家教委科技成果一等奖等多项部级以上奖励。2001-2006年由许仲梓教授担任首席科学家的国家“973”项目—“高性能水泥制备和应用的基础研究”,其关键技术使传统水泥性能提高30%、产量提高30%、环境负荷降低30%,作为一种国民经济中使用量最大的基础材料,这项成果蕴含的经济和社会效益巨大,研究成果达世界领先水平。该成果在我省的中联淮海水泥有限公司等大型水泥生产企业中得到推广应用,经济效益显著。2008年,由沈晓冬教授担任首席科学家的国家“973项目”——“水泥低能耗制备和高效应用的基础研究”,针对国家重大需求,紧紧围绕提高水泥性能、重点关注水泥生产节能减排的社会热点问题等开展基础科学研究。
南京工业大学 2021-04-13
石墨烯在环保领域的应用
1、石墨烯基口罩,目前已经在新冠病毒防治过程中投入使用,并获得好评。2、石墨烯基VOC吸附海绵:具有吸附速率快(半小时吸附甲苯蒸气可达自重64.8倍)吸附率高(传统材料7倍)、脱附简单彻底等优点,现已用于化工企业、仓储企业等。3、石墨烯基吸油海绵:具有吸附率高、脱附彻底、吸附选择性高、多次循环使用等优点, 广泛用于分散油及乳化油的破乳分离。4、石墨烯基油/水/固体悬浮物三相分离设备:具有占地面积小、运行费用低、反冲彻底等优点,已广泛用于地表水提标改造、污水厂污水处理、自来水/直饮水预处理、蓝藻处理等。
东南大学 2021-04-13
先进铸造耐磨材料制备应用
北京工业大学铸造耐磨材料课题组主要研究铸造耐磨材料强韧化、高温耐磨材料组相协同控制和 离心复合铸造耐磨高速钢轧辊。开发的耐磨高速钢轧辊(辊环)、多元低合金钢挖掘机斗齿、大型球  磨机复合衬板、烧结机耐磨蚀篦条、低破碎率铬系耐磨铸铁磨球、微合金化高铬铸钢轧机导辊、硼钛  微合金化(超)高锰钢、高铬耐磨复合烧结矿筛板(筛网)、耐磨耐蚀导电辊、高炉溜槽耐磨衬板、  爆炸焊接轧机衬板和高硼铸钢耐火制品模具等产品,已成功应用于宝钢、昆钢、江铜等大型企业,取    得了显著的经济和社会效益。已主持国家自然科学基金 3 项、科技部中小企业创新基金 5 项、北京市教委项目 4 项。荣获国家技术发明二等奖 2 项,国家科技进步二等奖 1 项、教育部技术发明一等奖 2 项,云南省、陕西省技术发明一等奖各 1 项
北京工业大学 2021-04-13
应用边界安全访问控制系统
本系统基于Socks协议实现的网络安全解决方案在应用层实现,能提供高安全性、高灵活性、细粒度控制的、高效的网络安全服务,并不会与所应用的网络环境、应用环境产生冲突,独立于原有的网络基础设施。   项目简介: 本系统基于Socks协议实现的网络安全解决方案在应用层实现,能提供高安全性、高灵活性、细粒度控制的、高效的网络安全服务,并不会与所应用的网络环境、应用环境产生冲突,独立于原有的网络基础设施。  
北京交通大学 2021-04-13
智能水凝胶的合成及其应用
水凝胶是交联高聚物在水中溶胀所形成的体系,它在工农业生产、日常生活 及医疗领域具有广泛的应用。例如在医用材料领域可以用于药物缓释载体、组织 工程材料、栓塞微球、皮肤伤口敷料、手术防粘剂、降温冰袋等用途。合成所用 原料是天然产物,例如海藻酸钠、透明质酸、壳聚糖、纤维素及改性淀粉等,也 可以用小分子单体进行合成。 本团队长期进行水凝胶的研究和产品开发,合成了各种类型的水凝胶。我们 可以根据用户实际需要进行各类水凝胶产品的设计和制备,优化合成工艺,解决 用户在制备和使用水凝胶过程中碰到的技术问题,对产品性能和质量进行控制, 满足用户的要求。 技术特点:经济技术指标与应用效果:用天然材料制备水凝胶,产物具有优 异的生物相容性和降解性,成本低廉,产品附加值高。 2、创新要点: 采用了现代先进合成方法、包括纳米材料制备技术,所得水凝胶产品具有优 异的环境响应性和适宜的力学性能及热性能。 3、效益分析: 医用材料具有巨大的市场,本项目投资与规模:可根据用户需要确定。 4、推广情况 合作方式:技术开发;提供技术服务。
江南大学 2021-04-13
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 227 228 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1