高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
污水处理自动控制及管理平台建设(技术)
  成果简介:该项目利用了计算机、PLC 高速运算、高精度及逻辑判断能力, 具有实时性好、可远程控制和管理、人-机交互性强、操作简单、使用方便 的特点。操作人员能从监控屏幕上或控制柜中完成自动、手动相关控制和故障监测。 项目来源:合作开发 技术领域:高效节能 应用范围:污水处理自动化、生产自动化 技术水平:国内先进 现状及特点:建立了先进水平的远程控制平台,在满足应用的基础上
北京理工大学 2021-04-14
人才需求:电机控制、电机设计工程师
需要电机控制和电机设计为硕士的人才需求。熟悉机电产品研发过程、熟练应用Solidwork、Pro-E、AutoCAD设计工具等设计、分析软件及汇编语言的编程,能独立完成非标设备部件或结构设计、能独立设计模拟和数字电路、进行电机结构及电磁设计等。
山东山博电机集团有限公司 2021-06-18
一种用于 RFID 标签生产的基板输送控制方法
本发明公开了一种用于 RFID 标签生产的基板输送控制方法, 包括:输入有关基板输送的一系列工艺参数,然后采集获取基板的当 前状态参数值;将基板的多个张力当前值分别与参考值相比较,并采 用双重张力控制方式来保证基板张力的稳定;此外,采用基于机器视 觉的纠偏方式来保证基板横纵向的精确定位。通过本发明,能够更好 地满足基板的张力控制需求,进一步改善定位精度,同时具备适应各 类复杂工况、不易被干扰、高效率和高可靠性等特点。 
华中科技大学 2021-04-11
轴承钢中非金属夹杂物控制关键技术
随着我国国民经济的不断发展,对轴承钢性能提出了更高的要求。超纯净轴承钢被广泛地应用于高速铁路、风电装备、航空发动机、高档轿车变速箱、高速精密机床和长寿命冶金轧机等对使用寿命、可靠性、承载能力严格要求的领域。超纯净轴承钢炼钢冶炼难度极高,主要是由于其钢中非金属夹杂物控制存在以下两个难题:(1)超高洁净度,总氧含量低于 5 ppm;(2)大颗粒夹杂物数量要求少,尺寸小于 15 μm。近 30 年来,通过引进、消化和吸收,实现了大部分高端装备的国产化,但对高端装备用高可靠长寿命轴承的国产化一直没有解决。因此,开发超纯净轴承钢中非金属夹杂物控制关键技术,为打破此领域国外产品及技术垄断、实现国内自主生产有重要意义。 (1)超纯净轴承钢精炼渣成分设计技术. 铝脱氧轴承钢都是通过高碱度精炼渣提升钢材的洁净度,减少钢中夹杂物数量。高碱度精炼渣具有很高的脱氧脱硫能力,效率高,可生产超低硫轴承钢。由于高碱度精炼渣中 CaO 含量高,易被钢中[Al]还原而进入钢液,从而生成 Ds 类夹杂,对轴承钢性能产生不利影响。另外,高碱度使精炼渣熔点变高,成渣慢,炉渣流动性变差,会影响脱氧脱硫效果,有可能引起卷渣。低碱度精炼渣由于碱度低,降低了 CaO-Al 2 O 3 类夹杂的影响,但脱氧能力下降使得氧化物夹杂上升。本项目研究应用 FactSage 热力学计算软件,研究了不同精炼渣成分对钢液成分、夹杂物成分的影响,通过对不同精炼渣系进行设计优化,确定精炼渣成分;同时,本项目在碱度 7-12 范围内进行工业试验,考虑了不同碱度精炼渣对轴承钢洁净度和夹杂物成分的影响,从而更系统准确地确定了有利于超纯净轴承钢夹杂物控制的最优精炼渣成分。 (2)超纯净轴承钢 VD 精炼控制技术.在真空状态下吹氩搅拌钢液,促使夹杂物从钢液内排除,使钢的洁净度提高。VD 精炼过程渣钢剧烈反应,渣中 CaO、MgO 被还原为[Ca]和[Mg]进入钢液,与钢中 Al 2 O 3 夹杂物反应生成镁铝尖晶石和钙铝酸盐,导致钢中 Ds 类夹杂数量增加,可能导致水口结瘤和最终轧材中出现Ds 类夹杂缺陷,影响轴承钢的质量水平,VD 精炼真空度的控制对于夹杂物的上浮去除和夹杂物成分非常重要。本项目对 VD 真空度进行了优化,使得最终产品夹杂物中的 CaO 含量由 30%左右降低至 5%以下,显著减少了 CaO-Al 2 O 3 和CaO-Al 2 O 3 -MgO 复合夹杂物的生成,使钢中夹杂物由 CaO-Al 2 O 3 类转变为镁铝尖晶石类,减轻了 Ds 类夹杂的危害。 (3)热处理过程夹杂物成分控制技术。对于轴承钢钢液中的夹杂物已经形成了一系列脱氧、精炼渣改性、真空精炼等成熟的夹杂物控制方法,可以较好实现冶炼过程从精炼到连铸过程夹杂物的有效控制。轴承钢轧制热处理过程不仅能够改变钢的组织结构和性能,也会使得氧化物夹杂与钢基体发生高温反应,造成钢基体成分偏析、原有氧化物夹杂的改变和新氧化物夹杂的析出。同时,热处理过程钢基体中氧化物夹杂的种类、性质、尺寸及形貌特征变化直接影响着最终轴承钢产品的组织和性能。本项目研究了在不同热处理温度(1225o C、1300 o C 和1375o )和热处理时间条件下,GCr15 轴承钢中非金属夹杂物的演变规律,并且发现热处理过程轴承钢中的 MgO-Al 2 O 3 -CaO 会逐渐转变为 MgO-Al 2 O 3 -CaS 夹杂物,小尺寸夹杂物完成转变所需时间较短,而大尺寸夹杂物完成转变所需时间较长。在不同热处理温度下,钢中夹杂物尺寸基本不变,但夹杂物转变速率不同。通过热力学计算和动力学模型,对轴承钢热处理过程中夹杂物的转变机理进行揭示。
北京科技大学 2021-04-13
槽式光热发电多模型预测函数控制及其优化
针对太阳能集热系统扰动多、大滞后和大惯性等控制难点,建立了适合控制器设计的简化分段非线性模型,并设计了基于预测函数控制策略的集热系统出口导热油温度控制系统。该预测函数控制策略在调节速度、超调量以及稳定性方面的控制效果均明显优于传统PID控制策略;与未简化的多模型预测控制相比,简化后的多模型预测函数控制的最大动态偏差增大了13%,但计算量大大降低,控制器的实时性也得到增强。
南京工程学院 2021-01-12
基于大数据分析的小基站开关控制方法
本发明公开了一种基于大数据分析的小基站开关控制方法,包括:采集场景信息步骤;数据预处理步骤;提取特征步骤;选择并训练模型步骤;预测步骤。本发明利用特殊场景下时刻表以及小基站接入人数的历史记录,建立数学模型,预测未来小基站内的待服务人数,根据待服务人数去控制小基站的开关,达到节能、减少基站间干扰的目的。 在建立数学模型的过程中,本方法结合数据挖掘和机器学习,提高了预测的准确率和系统的实用性。
东南大学 2021-04-11
典型化工工艺过程事故预防与控制技术及其应用
本成果针对化工工艺过程的生产特点,以火灾、爆炸、泄漏事故过程的危险状态及其存在与转化条件、事故成灾机理及其动力学过程理论模型为基础,综合运用计算机仿真模拟技术、软件工程理论、数据库技术、网络技术及GIS技术等,开发典型化工工艺过程实时灾害监测、仿真模拟与综合定量风险分析平台,为过程工业的事故隐患排查、灾害预防和灾情控制提供技术支撑。
南京工业大学 2021-01-12
非调质钢中非金属夹杂物控制关键技术
非调质钢作为高效节能环保型钢材在世界范围内发展迅速。它是指经过精密锻造或热轧并控制冷却后就可以达到调质钢才能得到综合性能的一类钢,由于在使用过程中可以省掉调质工序而得名。由于其具有节省能源、材料、减少淬火变形开裂、工艺简单等优点,目前备受世界各国的关注,得到迅速发展和使用,使用量日益增大,广泛用于诸如汽车连杆、曲轴、转向节轴、驱动轴、前桥等零件和结构件,是汽车用钢的典型代表。非调质钢属于合金结构钢,为了保证合金结构钢所制零件的使用寿命,对其洁净度有严格的要求,非调质钢可以采用各种方式进行冶炼,但其对洁净度的要求,只能比合金结构钢更高,而且非调质钢属于微合金钢,要发挥合金元素的作用,其钢液必须是满足一定的洁净度的。因此,开发非调质钢中非金属夹杂物控制关键技术及其重要。 (1)非调质钢中夹杂物成分控制技术。将不同工序夹杂物成分求平均值,观察夹杂物在全流程的变化趋势。从 Al 2 O 3 -SiO 2 -MnO 三元相图可以看出,夹杂物中主要成分是 Al 2 O 3 和 MnO。随着冶炼进行,夹杂物中 MnO 含量变化不大;夹杂物中 SiO 2 含量比较稳定,在 10%左右,VD 破真空后夹杂物中 SiO 2 含量有所升高,其余工序几乎没有变化。夹杂物平均成分在 Al 2 O 3 -MgO-CaO 2 三元相图变化表明,钢中夹杂物中 MgO 含量较低,约在 10%以下,冶炼过程中没有明显变化,VD 真空处理后,由于渣线对耐火材料的侵蚀,导致出现部分高 MgO 含量的夹杂物,而良好的渣吸附作用使夹杂物中 MgO 含量没有明显变化;夹杂物中 CaO 含量在冶炼过程中有先升高,后降低的趋势。夹杂物平均成分在 Al 2 O 3 -SiO 2 -CaO 三元相图变化表明,冶炼过程中 SiO 2 含量稳定;夹杂物中 CaO 含量在 LF 进站时较低,经过 LF精炼后,夹杂物从 Al 2 O 3 -MnO 为主要成分,转变为 Al 2 O 3 -MnO–CaO;VD 真空精炼对夹杂物成分影响不大,但增 S 操作后,夹杂物中 CaO 含量明显降低,可能是由于生产 CaS 的缘故;连铸过程由于二次氧化,使夹杂物中 Al 2 O 3 含量上升,夹杂物 CaO 含量有所下降。全流程夹杂物平均成分在 Al 2 O 3 -MnO-CaO 三元相图变化表明,电炉出钢后夹杂物中 Al 2 O 3 含量较高,LF 出站和 VD 真空后夹杂物中 Al 2 O 3 含量有所降低,CaO 含量有所升高,渣钢平衡反应是其主要原因;夹杂物中 Al 2 O 3和 MnO 含量在增硫之后有所升高,可能是由于连铸过程中有二次氧化导致。 (2)非调质钢中夹杂物数量和尺寸控制技术。根据 Aspex 扫描结果做出的全流程钢中硫化物、氧硫化物、氧化物分布图,如图 2。对全流程单位面积夹杂物数量结果分析表明,随着冶炼的进行,氧化物数量在 VD 破真空前持续降低,软吹后数量有所升高,之后较为稳定,数量约在 12 个/mm2 ,多数氧化物夹杂属于氧硫化物,在 VD 破真空后明显降低,较 LF 工序后期降低约 50%,体现了极佳的精炼效果。连铸过程的氧化物夹杂数量稳定,保护浇铸较好。铸坯和轧材横截面中数量均较低,约 10 个/mm2 。硫化物是最终钢中主要夹杂物。LF 精炼和 VD真空精炼使钢中的硫化物数量降低。在 VD 破软吹后加入 FeS 进行增硫,硫化物数量明显升高,铸坯中由于凝固过程有充分的时间让硫化物聚集长大,因此数量较低,但面积较大。轧材横纵断面中硫化物数量较高,但相对铸坯中尺寸较小,轧材纵截面硫化物的尺寸相对横截面较大。
北京科技大学 2021-04-13
弹簧钢中非金属夹杂物控制关键技术
弹簧钢广泛用于飞机、铁道车辆、汽车、拖拉机等运输工具和工程机械等各种设备中,是制造各种螺旋簧、扭簧、板簧及其类似作用的其它形状弹簧的钢种。弹簧工作在周期的弯曲、扭转等交变力条件下,经受拉、压、冲击、扭、疲劳腐蚀等多种作用,有时还要承受极高的短时突加载荷。除表面脱碳、表面缺陷外,造成弹簧的疲劳断裂破坏的主要因素是钢中非金属夹杂物。非金属夹杂物对疲劳性能的影响一方面取决于夹杂物的类型、数量、尺寸、形状和分布;另一方面,由于钢基体组织和性质制约,与基体结合力弱的尺寸大的脆性夹杂物和球状不变形夹杂物的危害最大。钢的强度水平愈高,夹杂物对疲劳极限的有害影响也愈显著。因此,提高弹簧的疲劳寿命,关键要提高弹簧钢的洁净度,因此就要降低氧含量,减少非金属夹杂物的含量并改善夹杂物形态分布及尺寸。 (1)不锈钢冶炼脱氧及夹杂物预测热力学。通过热力学计算预测了弹簧钢中 Al-O、Si-O、Mg-O、Ca-O 脱氧平衡曲线,以及多元符合脱氧情况下 Al-Si-O、Al-Mg-O、Al-Mg-Ca-O 和 Al-Si-Ca-O 等夹杂物生成相图。 通过热力学计算预测了渣钢反应过程中不同精炼渣成分对于钢中[Al]s 和[O]含量的影响,研究表明高碱度有利于氧含量的降低,低碱度有利于钢中铝含量的去除。通过建立了钢液凝固和冷却过程弹簧钢中夹杂物变化热力学计算模型,可以预测钢液凝固和冷过过程中 MnS、TiN 和氧化物夹杂的变化和析出规律。 (2)铁合金洁净度对弹簧钢中夹杂物的影响。通过正常合金炉次和合金优化卢比全流程夹杂物演变规律的对比,可以看出,合金的选择对于夹杂物的性质会有较大的影响。在 LF 合金调整后夹杂物成分相差较大,优化合金可以有效的控制夹杂物中 Al2O3 含量,而对于 MgO 含量影响不大,提升夹杂物塑性化比例。 (3)弹簧钢精炼渣成分改性夹杂物。目前脱氧工艺主要有两种:一种是降低钢中总氧,获得高的洁净度,即采用强脱氧剂 Al 脱氧,将钢中绝大部分溶解氧转化为 Al 2 O 3 ,然后通过炉渣吸收,吹氩或电磁搅拌以及利用真空处理等手段促进夹杂物上浮,达到降低 T.O. 的目的。另一种脱氧路线是采用控制夹杂物种类、形貌、大小、分布的方法,采用 Si 脱氧,严格控制钢中 Al 含量,避免Al 2 O 3 的析出,这种工艺生产的弹簧钢虽然 T.O. 高于 Al 脱氧钢,但是夹杂物低熔点的、具有良好变形能力的 CaO-Al 2 O 3 -SiO 2 系夹杂物,疲劳极限优于 Al 脱氧弹簧钢。
北京科技大学 2021-04-13
帘线钢中非金属夹杂物控制关键技术
钢帘线被誉为是线材中的顶级产品,被誉为“皇冠上的明珠”。它是伴随着子午线轮胎的发展而发展起来的。以钢帘线为骨架材料的子午线轮胎具有高速、高载、耐久等一系列优良特性。随着汽车工业的发展,用于制造子午线轮胎的钢帘线需求量不断增加,同时对钢帘线的品种、性能及质量提出新的要求。作为生产钢帘线的原材料,帘线钢质量很大程度上决定了帘线的品质。帘线钢的洁净度,元素偏析等级,尤其是钢中夹杂物的形态对后续产品有着极大的影响。非金属夹杂物易引起钢丝拉拔和合股过程中断丝的发生,因此要求帘线钢中夹杂物尺寸小,且在轧制和冷拔等加工过程中具有良好的变形性能。根据子午轮胎产品性能和太阳能级硅产业的发展要求,钢帘线和切割丝向着超高强度(4000 MPa 及以上)方向发展,开发高强度、超高强度帘线钢丝,对实现轮胎的轻量化、降低用燃料的费用、降低生产成本意义重大。目前国内依旧不能稳定、高效的生产高牌号的帘线钢,开发帘线钢冶炼关键技术对提升企业生产技术水平和质量控制水平,取代进口高端钢帘线产品意义重大。 (1)帘线钢冶炼过程原辅料成分设计技术。帘线钢生产过程中一般采用Si-Mn 复合脱氧,但由于合金和辅料中存在 Al 的来源,帘线钢主要的夹杂物为MnO-Al 2 O 3 -SiO 2 系和 CaO-Al 2 O 3 -SiO 2 系两类。其中,MnO-Al 2 O 3 -SiO 2 为脱氧反应产物,CaO-Al 2 O 3 -SiO 2 为钢渣反应生成。不同工序氧化物复合夹杂类型会发生转变,大量研究表明转炉出钢、精炼过程随着钢液成分的变化,夹杂物的成分在不断变化中。实际生产中使用的各种物料,包括合金、脱氧剂及钢包内衬直接影响钢液成分,进而改变钢液中非金属夹杂物的成分。高端帘线钢中非金属夹杂物主要成分为 SiO 2 -MnO,几乎没有 Al 2 O 3 的存在,因此在实际的生产过程中杜绝任何含 Al的原料。国内企业在实际生产时更倾向于使用价格低廉的合金、脱氧剂等原料以降低生产成本,为此本项目不仅研究了合金、脱氧剂、耐材等物料中 Al 的含量,还研究了各物料对钢液成分以及非金属夹杂物成分的影响程度,以选择更高性价比的物料搭配。在使用不同物料后取样分析,发现合金对钢液中非金属夹杂物的影响最大,低铝硅铁和普通硅铁对钢液中非金属夹杂物的成分影响如图 1,可以看出合金的使用直接改变夹杂物的体系。实际生产过程中可根据产品等级和各物料对钢中非金属夹杂物的影响,针对性的使用物料控制生产成本。 (2)帘线钢精炼渣成分设计技术. 炉渣成分对钢液成分有着直接影响,帘线钢精炼一般采用 CaO-SiO 2 -Al 2 O 3 渣系,精炼渣的成分对钢中夹杂物的控制起重要作用。研究表明精炼渣中相同 Al 2 O 3 含量的条件下,钢液中[Al]s 含量随精炼渣碱度增高而增高;相同碱度的条件下,钢液中 Als 含量随精炼渣中 Al 2 O 3 含量增加而增加。当精炼渣的碱度为 1.0 时,钢液中[Al]s 随渣中 Al 2 O 3 含量增加亦呈增加趋势, [Al]s 增量有限。同时,夹杂物中 Al 2 O 3 和 MnO 含量取决于渣-钢间的氧势,如氧势高,则夹杂物中 MnO 含量高。反之,当系统氧势低时,渣中CaO 和 Al 2 O 3 会有少部分被还原进入钢液,夹杂物 CaO 和 Al 2 O 3 含量增加,MnO 含量减少。在实际的冶炼过程中,精炼渣进入钢液是不可能完全避免的,精炼渣进入钢液后将形成含大量 CaO、Al 2 O 3 的夹杂物。对此为控制钢中非金属夹杂物的成分将精炼渣的碱度控制在 CaO/SiO 2 ≤1,实际生产过程中,精炼渣的最佳成分还应根据精炼过程的渣钢比,所使用合金、脱氧剂、耐材等条件进行优化。 (3)帘线钢中夹杂物变形性能评估模型。许多研究认为低熔点夹杂物在轧制和加工过程中变形更好。如果轧制过程中夹杂物是液态的,那这毫无疑问是对的。 102 / 298然而,实际的轧制温度往往大部分都低于夹杂物的熔点。在轧制温度降到夹杂物固相线温度以前,虽然夹杂物不是液态,但是由于软化它们仍然具有一定的变形性。然而,当温度降低至固相线以下时,夹杂物将完全转变为固态。并且,钢的变形不仅包括轧制,还包括其他冷加工,譬如,帘线钢冷拔过程的温度基本为室温,显著低于夹杂物的固相线温度。因此,只用熔点来评估冷拔或冷轧过程中夹杂物的变形性能不太合理或者说不太全面。本项目提出使用低温下夹杂物的杨氏模量评估变形能力的模型,认为氧化物变形能力与杨氏模量大小成反比,并拟合了低温下的氧化物杨氏模量与平均原子体积关系:2.939811 E V ,对Al 2 O 3 -SiO 2 -CaO 系和 Al 2 O 3 -SiO 2 -CaO系氧化物的低温杨氏模量进行了计算,如图 2所示。由于冷拔过程氧化物变形能力与杨氏模量大小成反比,为了降低冷拔过程的断丝率,夹杂物需要控制到图中所示的深蓝色区域,即要求具有很高的 SiO 2含量和极低的 Al 2 O 3 含量。由图还可知,由于具有最大的杨氏模量,Al 2 O 3 对帘线钢中氧化物的变形性能最为有害,这也是为什么帘线钢生产过程中需要严格控制钢中 Al 含量。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 122 123 124
  • ...
  • 185 186 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1