高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
非平坦信道下多光源多载波可见光通信系统的优化方法
本发明公开了一种非平坦信道下多光源多载波可见光通信系统的优化方法,包括如下步骤:(1)设置多光源多载波可见光通信系统的参数,包括信道参数、噪声大小和最大光功率,以最大化数据速率R为目标优化;(2)对直流偏置b优化,得到优化后的直流偏置b*;(3)归一化波束成形向量{uk}进行优化,k=1,...,K?1,其中K是子载波的总个数,得到优化后的归一化波束成形向量(4)根据优化后的归一化波束成形向量得到近似最优的波束成形向量ω*。本发明的优化方法不需要额外改变系统硬件等外部条件,仅通过简单的计算,就能大大提升系统性能;当系统的最大光功率受限时,优化后的系统光强能够保持恒定,可以兼顾照明;本发明优化方法收敛速度快,易于实现,鲁棒性高。
东南大学 2021-04-11
一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
本发明公开了一种应用到光谱椭偏仪中的氙灯光线光强平滑处 理装置及方法。该光强平滑处理装置包括准直透镜、汇聚透镜和光阑, 准直透镜为消色差透镜,用于将待处理的氙灯光线准直为平行光束; 汇聚透镜为单透镜,用于将平行光束汇聚聚焦,汇聚后的光斑大小随 波长的增加而增大;光阑设置在汇聚透镜后并间隔一定波长焦距位置 处,通过设定该光阑的大小使紫外波段的光斑可透过该光阑而可见到 近红外波段的光斑被阻挡,从而减小可见到近红外波段的光束光强, 实现平滑。本发明还公开了一种氙灯光线光强平滑处理方法。本发明 没有损失任何波段的光线,探测器或者光谱仪可以正常响应全光谱范 围的光线,从而可以光谱椭偏仪从紫外到近红外全光谱范围内的高精 度测量。 
华中科技大学 2021-04-11
一种光谱椭偏仪中氙灯光源的光强平滑处理装置及方法
本发明公开了一种应用到光谱椭偏仪中的氙灯光线光强平滑处理装置及方法。该光强平滑处理装置包括准直透镜、汇聚透镜和光阑,准直透镜为消色差透镜,用于将待处理的氙灯光线准直为平行光束;汇聚透镜为单透镜,用于将平行光束汇聚聚焦,汇聚后的光斑大小随波长的增加而增大;光阑设置在汇聚透镜后并间隔一定波长焦距位置处,通过设定该光阑的大小使紫外波段的光斑可透过该光阑而可见到近红外波段的光斑被阻挡,从而减小可见到近红外波段的光束光强,实现平滑。本发明还公开了一种氙灯光线光强平滑处理方法。本发明没有损失任何波段的光线,探测
华中科技大学 2021-04-14
国际首台万层级高分子微纳层叠共挤出装置
"(1)研制出了国际上首台能稳定连续挤出万层级高分子材料微纳层叠复合装置; (2)揭示了多组分体系在微纳层叠过程中的形态结构演变规律及其形态结构调控机理; (3)发现了微纳层叠复合结构在功能方面所呈现的一些新现象和新特性(例如隔声、阻尼、 介电、电磁屏蔽、药物缓释等)。 在国际上整体处于领先水平 "
四川大学 2021-04-10
一种基于金属纳尖阵电极的电调透射光薄膜
本发明公开了一种基于金属纳尖阵电极的电调透射光薄膜,其包括:由纳米尺度间隔的纳尖高密度排布构成的一层纳米厚度的金属纳尖阵阴极和一层纳米厚度的平面阳极,该阳极由透光的纳米厚度的金属氧化物导电膜制成,阴阳电极间填充有由纳米厚度的透明光学介质材料制成的电隔离膜;在加电态下,金属纳尖阵阴极上可自由移动的电子被电极间所激励的电场驱控,向纳尖顶聚集,纳尖底部及相邻尖端间的平坦区域上的自由电子分布密度因部分甚至绝大多数自由电
华中科技大学 2021-04-14
一种双路电控纳线簇电极的电调光透射薄膜
本发明公开了一种双路电控纳线簇电极的电调光透射薄膜,其包括:由纳米尺度间隔的纳线簇高密度排布构成的图案化公共电极以及分布在其上端和下端的顶面阴极和底面金属纳膜阴极,顶面阴极和图案化公共电极均由透光的纳米厚度的同材质膜制成,底面金属纳膜阴极由纳米厚度的金属膜制成;顶面阴极和图案化公共电极以及图案化公共电极与底面金属纳膜阴极间均填充有纳米厚度的同材质光学介质材料。本发明双路电控纳线簇电极的电调光透射薄膜,可对入射光
华中科技大学 2021-04-14
一种利用静电纺丝制备微纳波纹结构的方法及装置
本发明公开了一种利用静电纺丝制备微纳波纹结构的方法及装 置,该方法包括:配制静电纺丝高分子溶液;使金属喷嘴与收集板保 持一定距离,避免出现鞭动行为;控制静电纺丝高分子溶液以一定的流量速度流出,同时由高压发生器向金属喷头和收集板之间施加电压, 使静电纺丝高分子溶液带电并形成射流,并确保射流为直线射流;使 金属喷嘴旋转,带动射流空间发生旋转;同时由移动平台带动收集板 使收集板沿一个方向运动,在基材上即形成波纹结构。本发明通过对 其关键工艺步骤譬如射流方式等进行改进,能够有效解决静电纺丝制 备波纹结构时控
华中科技大学 2021-04-14
基于微纳光学结构的太阳能电池高效陷光技术
 太阳能发电是未来可再生能源的重要领域,提高太阳能电池对太阳光的利用效率、进一步提高太阳能电池的光伏效率,已经成为光伏领域的重要课题。太阳能电池的本征吸收层很薄,甚至小于光的波长,使得进入太阳能电池光子的光程很短,成为除材料以外,制约太阳能电池进一步提高光伏效率的重要因素。为了提高光子在太阳能电池本征吸收层中的吸收率,需要研究在降低电池表面反射的同时,延长光子在本征吸收层的光程,实现高效陷光。 本项目基于微纳光学理论和微纳结构加工技术,提出了“低表面反射+低光能逃逸+高效延长光程”的高效超陷光机制,设计了具有“低表面反射率+低光能逃逸+高效延长光程”的高效超陷光结构。利用宽带陷光技术研发的宽带陷光光伏玻璃,在380nm~1200nm波长范围内,具有高于40%的雾度。宽带陷光光伏玻璃基片应用于硅叠层薄膜太阳能电池, 在380nm~1200nm波长范围内,对于准垂直入射光的反射率小于3%. 在AM1.5测试环境下,太阳能电池光伏效率比较没有陷光结构光伏玻璃的太阳能电池相对提高5%。以上。 基于微纳光学结构的太阳能电池高效陷光技术,在太阳能电池、太阳能电池组件封装中具有广泛的应用前景,对于提高太阳能电池及其组件的光伏效率具有重要意义。
上海交通大学 2021-04-13
节能型智能化半导体照明产品开发及产业化
该项目隶属于“天津市科技支撑计划重点项目”,项目将LED照明与光通信技术等结合起来,形成新的技术模式,开发了集照明与光通信为一体的LED系统,设计实现了基于照明LED的高速短距离光通信收发单元,LED室内调光调色照明控制器,基于LED照明的光学无线智能家居控制系统等,实现了通信质量和照明效果的协同优化。 本项目中的产品均属于典型的节能产品,具有很高的技术含量和高附加值,具有节能环保、电磁免疫、经济集约等优点,在上海世博会“沪上.生态家”、“航空馆”以及第七届中国国际半导体照明展览会等展出,获得显著的社会效益,对推动相关产业的发展起到很好的作用。科研团队近年来深入的研究半导体照明和通信技术,在半导体照明技术成果应用与产业化、光电信号转换、光通讯设备、高速光发射接收模块开发等相关领域开展研究工作,并取得突出的成绩,申请了相关的国家级自然科学基金项目,并已获批。
天津职业技术师范大学 2021-04-10
二维拓扑材料MoTe2中发现光激发诱导的亚皮秒时间尺度结构相变
用各种物理手段(电场、磁场、压力、掺杂等)创造新的物态或调控不同量子物态是凝聚态物理领域广受关注的研究前沿,并有巨大的应用前景。而超短脉冲激光的飞速发展使得光激发调控复杂量子材料的晶体结构和电子性质成为可能。层状过渡金属二硫化物MoTe2可以形成几种不同的晶体结构并具有不同的物理性质或拓扑能带结构,为调控或切换不同结构相变提供了可能性。最近量子材料科学中心王楠林课题组和合作者利用超快泵浦探测和时间分辨的二次谐波探测技术,研究了MoTe2中两个半金属相之间激光诱导的亚皮秒时间尺度的结构相变。 MoTe2是由MoTe6八面体结构单元构成的原子层沿c方向堆叠形成的二维材料系统,不同的堆叠方式具有不同晶体对称性。1T-MoTe2在室温时是单斜的1T’相,随着温度降低在250K时发生结构相变,转变成正交的T_d相,其中可以存在第二类外尔费米子。王楠林课题组通过实验发现高强度的近红外激光脉冲可以在亚皮秒时间尺度内将中心反演对称性破缺的T_d相驱动到具有中心反演对称的1T’相。该相变发生的最明显的特征是时间分辨的反射率变化中横向剪切振荡声子的消失和二次谐波强度的急剧下降。通过选择和改变激发脉冲的脉宽和波长,从实验上排除了激光加热效应。该项研究首次在超快亚皮秒尺度内实现了激光诱导的非加热效应引起的MoTe2晶体中第二类Weyl半金属相与正常半金属相的超快结构相变。它为超快激光控制固体的拓扑特性开辟了新的可能性,使超快激光激发的拓扑开关器件具有潜在的实际应用价值。 该工作于2019年5月22日在线发表于著名学术期刊Physical Review X(Phys. Rev. X 9, 021036 (2019)),第一作者为量子材料中心博士生张梦瑶,王楠林教授和其研究组的董涛博士是通讯作者,量子材料科学中心王健教授研究组为该工作提供了样品。该项研究得到国家自然科学基金委员会、国家重点研究开发项目等项目的支持。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 20 21 22 23 24 25 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1