高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于天然纤维素制备微生物燃料电池的三维阳极材料研究
微生物燃料电池(MFCs)是利用微生物的新陈代谢氧化化学物质并释放电子,把化学能转化为电能的一种电化学装置。MFCs由于具有去污和产电双重功能,是一种“绿色”能源。其最具潜能的应用是污水处理,即利用微生物分解污水中的有机物,并将转化为可用的电能。且整处理过程不用曝气,可节省大量的耗能。目前,微生物燃料电池的发展和应用中最大的障碍是材料的成本和性能。 本研究利用低成本的天然木质纤维素为原料,采用直接碳化的方法来制备三维大孔碳材料作为微生物燃料电池的阳极材料,并取得突破性进展,。 相关系列研究结果2012年分别发表在Journal Material Chemistry, ChemSusChem 以及Energy & Environmental Science等国际权威杂志上。特别地,基于天然纤维制备的波纹层状三维碳阳极,阳极电流密度提高了10倍,达到了200 A m-2,该结果2012年已发表在能源环境领域顶级杂志Energy & Environmental Science上,影响因子9.61. 该研究成果制备的材料成本低,性能优异。该研究成果结合我们的阴极氧气还原催化剂的研究成果,以及后续的隔膜研究成果,将可微生物燃料电池的在污水处理中的规模化应用。
江西师范大学 2021-05-05
天然纤维素蒸汽闪爆改性及其在新型溶剂中溶解与绿色湿纺技术
Ø 项目针对目前粘胶纤维工业生产过程存在的污染严重问题,采用自行设计的高压热蒸汽闪爆(Steam Explosion,简称SE)技术,在超分子水平实现对天然木纤维素快速、安全可靠、低污染物理改性并固化其构象,同时利用环保、廉价的新型纤维素溶剂体系,实现温和条件下纤维素的溶解,通过真空脱泡、充氮、喷丝、凝固等工艺的优化获得了纤维素纤维的绿色湿纺技术,丝性能达到或超过粘胶丝。
北京理工大学 2021-01-12
李学宝课题组在棉纤维发育的分子调控机制研究中取得新进展
近日,我校生命科学学院李学宝教授课题组在棉纤维发育的分子机制研究方面取得重要进展,研究成果在线发表于著名植物学期刊《The Plant Journal》(Li et al. 2018,DOI:10.1111/tpj.14108)。
华中师范大学 2021-02-01
中国科大在纳米限域毛细凝聚理论研究取得重要突破
毛细凝聚是指在限域空间内的气体,不必达到过饱和状态即可发生凝聚从而转变成液体的现象。毛细凝聚普遍发生于颗粒状物料和多孔介质中,可极大地改变固液界面处的吸附、润滑、摩擦和腐蚀等特性。毛细凝聚关联了宏观固液界面润湿和微观分子间力学作用,是纳米限域力学的关键科学问题,也是当前介尺度科学的国际前沿热点。 早在150年前,著名的英国科学家威廉·汤姆森(William Thomson,后来被册封为开尔文勋爵)从理论上描述了毛细管内弯曲的液气界面引起的蒸气压变化,被称为开尔文方程,这是固液界面润湿领域三大经典理论之一。数十年来,研究者致力于研究开尔文方程在纳米尺度的适用性问题。然而,在极端限域条件下,通道特征尺寸与水分子大小相当,实验观测难度大,经典模型中采用的弯月面曲率、接触角等概念难以准确定义,给理论分析带来极大挑战。 针对该问题,国际合作团队利用二维材料构筑的纳米通道开展了实验,基于通道壁面变形表征了毛细凝聚。我校王奉超教授研究揭示了固液界面能的尺寸效应,修正了经典的开尔文方程,建立了纳米限域毛细凝聚的新理论,对该极限尺度的最新实验结果及其力学机理进行了合理解释,阐述了固液界面力学作用在纳米/亚纳米尺度的毛细凝聚中扮演的重要角色,明确了经典理论方程中重要参数及边界条件的微观理解是介尺度固液界面科学研究的核心所在。
中国科学技术大学 2021-02-01
超低渗油藏注水开发降压增注用纳米液及其制备方法
本发明涉及油田注水增注剂,尤其是超低渗油藏注水开发降压增注用纳米液及其制备方法。该降压增注用纳米液由双基团修饰纳米二氧化硅颗粒,NaOH水溶液组成。其中,双基团修饰纳米二氧化硅颗粒由烷基和烷基酸共同修饰。该降压增注纳米液制备简单,分散均一,稳定性好。注入地层后,双基团修饰纳米二氧化硅颗粒在储层岩石表面,将岩石表面的水化膜剥离,形成纳米吸附层,随着地层水环境中pH由碱性变为中性,使岩石表面润湿转变,从而产生疏水滑移效应,达到降低水流阻力和注入压力的目的。
中国地质大学(北京) 2021-02-01
巨噬细胞靶向的眼用抗炎抗过敏纳米胶体制剂
 药物制剂2. 体外抗炎作用与阴性对照组相比,脂质体滴眼剂对巨噬细胞分泌炎性细胞因子NO和TNF- a的抑制作用更明显(p<0.01)。与阳性对照组相比,阳性对照组(地塞米松溶液,250μg/mL)与脂质体(18250μg/mL)的体外抗炎作用无显著差异(p﹥0.05)。说明脂质体滴眼液具有良好的体外抗炎作用。结果如表和图所示。Table. Effect on NO and TNF-α secretion in RAW264.7 cells. (mean ±SD, n=6)Fig. 8. (A) Effect on TNF-α secretion of RAW264.7 cells, (B) Effect on the secretion of inflammatory mediator NO in RAW264.7 cells.3. 体内抗炎效果体内抗炎效果结果见下图。知识产权类型:发明专利知识产权编号:CN2019106249078技术先进程度:达到国际领先水平成果获得方式:独立研究获得政府支持情况:无
郑州大学 2021-04-11
中国科大在纳米限域毛细凝聚理论研究取得重要突破
项目成果/简介:毛细凝聚是指在限域空间内的气体,不必达到过饱和状态即可发生凝聚从而转变成液体的现象。毛细凝聚普遍发生于颗粒状物料和多孔介质中,可极大地改变固液界面处的吸附、润滑、摩擦和腐蚀等特性。毛细凝聚关联了宏观固液界面润湿和微观分子间力学作用,是纳米限域力学的关键科学问题,也是当前介尺度科学的国际前沿热点。 早在150年前,著名的英国科学家威廉·汤姆森(William Thomson,后来被册封为开尔文勋爵)从理论上描述了毛细管内弯曲的液气界面引起的蒸气压变化,被称为开尔文方程,这是固液界面润湿领域三大经典理论之一。数十年来,研究者致力于研究开尔文方程在纳米尺度的适用性问题。然而,在极端限域条件下,通道特征尺寸与水分子大小相当,实验观测难度大,经典模型中采用的弯月面曲率、接触角等概念难以准确定义,给理论分析带来极大挑战。 针对该问题,国际合作团队利用二维材料构筑的纳米通道开展了实验,基于通道壁面变形表征了毛细凝聚。我校王奉超教授研究揭示了固液界面能的尺寸效应,修正了经典的开尔文方程,建立了纳米限域毛细凝聚的新理论,对该极限尺度的最新实验结果及其力学机理进行了合理解释,阐述了固液界面力学作用在纳米/亚纳米尺度的毛细凝聚中扮演的重要角色,明确了经典理论方程中重要参数及边界条件的微观理解是介尺度固液界面科学研究的核心所在。
中国科学技术大学 2021-04-11
纳米银表面改性聚氨酯中心静脉导管及其制备方法
鉴于医用导管在临床应用或储存中容易被细菌污染,带来感染问题;本技术成果对医用聚氨酯中心静 脉导管进行表面改性,赋予导管表面广谱、强效的抗菌性能。基于紫外光辐照化学镀反应,在聚氨酯中心 静脉导管表面原位将银离子还原成纳米银。本技术成果制备的纳米银表面改性聚氨酯中心静脉导管具有较 患者进行放射性口腔黏膜炎发病风险预测,对高危个体提前采取针对性的预防措施,实现个体化治疗,显 强的抗菌和抗感染性能,应用前景广泛。 得尤为重要。
中山大学 2021-04-10
一种钇铝石榴石纳米粉体的制备方法
本发明公开了一种钇铝石榴石(YAG)纳米粉体的制备方法,其特点是将R2O3,Y2O3,铝为原料,按照化学组成(RxY1-x)3Al5O12称取,配成盐溶液,Al3+的浓度为0.01~0.07mol/L,其中X=0.01~0.05;将沉淀剂配成浓度为0.5~1.5mol/L的溶液,沉淀剂摩尔数为盐溶液总摩尔数的8~12倍,盐溶液与沉淀剂的体积比为0.625~6.25;然后,将上述盐溶液和沉淀剂通过蠕动泵,用并流沉淀法以2~50mL/min的盐溶液和以2~24mL/min沉淀剂均匀混合,得到沉淀物;沉淀物经陈化,洗涤,干燥后过筛得到前驱体;前驱体在温度900-1100℃煅烧得到掺钕钇铝石榴石纳米粉体。
四川大学 2021-04-11
一种纳米结构环氧树脂固化物的制备方法和用途
本发明公开了一种纳米结构环氧树脂固化物的制备方法,包括:将重量分数为1~20%的纳米尺寸的核交联星型聚合物与重量分数为80~99%的含环氧树脂和固化剂的混合物经本体混合或在溶剂中溶液混合均匀后,再在室温~250℃、0~10MPa条件下固化成型。采用本发明方法制备得到的环氧树脂固化物中分散相为无序球状、平均尺寸为5~200nm,在保证良好热加工性能同时,力学性能较纯环氧树脂增大,在涂料、电子封装材料和层压板材料中有广泛的应用。本发明的制备方法简单,相分离过程不受固化剂、压力和溶剂等条件的干扰,可在不损失环氧树脂加工性能的条件下提升其力学性能。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 131 132 133
  • ...
  • 205 206 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1