高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
微注射控制器
项目的背景及目的 在生物医学的科学研究和临床检验中,细胞级的微操作越来越受到人们的重视。在此类试验中,向细胞中注射或从细胞中抽取物质,对注射量和抽取量要求都十分的精确。目前国内操作人员完全依靠经验,手动完成实验,成功率低,对操作人员要求高,精确度无法保证。因此我们设计出一种可编程的高精度微注射控制器,它具有精度高、可编程、使用方便等特点,可以大大提高细胞注射的成功率和注射精度,给科学实验和临床注射带来极大的方便。 技术原
南开大学 2021-04-14
玻璃微针拉制仪
项目的背景及目的 在微操作过程中,直接对生物体进行作用的是微操作工具(玻璃微针)。生物用玻璃微针是由玻璃管、或玻璃棒经专用仪器拉制而成的,这种仪器叫做玻璃微针拉制仪。在进行生物显微切割试验时,所用的玻璃微针可以由玻璃管、或玻璃棒制成,不同的玻璃材质可以拉制出具有不同韧性的玻璃微针,微针末端的直径由微针拉制仪器的工作条件设定,最小可到0.5um。 技术原理与工艺流程 通过加热线圈对毛细玻璃管
南开大学 2021-04-14
微流控相关技术
1、为实现完全的手推进样,开发了配套的注射器流量稳定头,使得手推注射器可以产生稳定的流量,摆脱浓缩效果的强流速依赖性。所开发微流控滤头具有优异的样品浓缩性能,操作通量达到若干毫升/分钟级。 2、开发了一款具有自主知识产权的全自动细胞分选仪器(如下图所示),该仪器以“8核”螺旋流道惯性分选芯片为核心,集成了被动流量调节阀,使得仪器可以采用低成本的隔膜泵作为进样驱动。仪器具有多次分选、回液、富集浓缩及自动清洗等多种模式。可全自动实现血液中肿瘤细胞的高通量自动分选和浓缩。两次分选后血细胞去除率99%,癌细胞回收率80%以上。该仪器无需复杂的生化标记,有望为癌症转移的早期诊断和有效预后评估提供重要工具手段。
东南大学 2021-04-13
多功能微耕机
小蜂王160/170
日照市立盈机械制造有限公司 2021-08-23
易班精品微党课
易班精品微党课,本课群包含易班总部最新推出的27门精品微党课,其中7门是朋辈教育(博士生讲师团)。 习近平新时代中国特色社会主义思想内在逻辑与丰富内涵 新时代主要矛盾的内涵 十九大新征程与中国共产党的百年建国目标 学习十九大精神坚定中国特色社会主义道路自信 打好脱贫攻坚战——精准扶贫 全面认识“一带一路” 改革开放40年在改革开放中坚定文化自信 ……
上海易班企业发展有限公司 2021-02-09
LED微晶面板灯
深圳市拓享科技有限公司 2021-08-23
DMD数字微镜器件
西安中科微星光电科技有限公司 2022-06-27
玻璃微珠白昼幕
产品详细介绍      玻璃微珠白昼幕:采用高反射系数的光学玻璃珠制成,幕面反射系数高,适用于电化教学、投影电视、镭射电视、卡拉OK和录像等;  
江苏省通州市长江银幕厂 2021-08-23
针对富营养化水体的微纳米气泡强化富氧和水生植物种植的高效耦合修复技术
我国湖泊水库近在近20年来富营养化发展速度相当快,藻类爆发日趋频繁,已经严重影响到了饮用水水质。上海地处平原,河道水流缓慢,近年来日益严重的“黑臭河道”现象也是典型的半封闭性水域的富营养化。曝气富氧和种植水生植物是修复富营养化水体的有效技术,但是常规大气泡富氧方式富氧效率低,容易造成底泥扰动反而加重水体污染;水生植物在冬季修复效率低下。前期研究结果发现微纳米气泡具有比表面积大、上浮速度慢的特点,可以改善下层水体的溶解氧浓度,恢复好养微生物和浮游动物的活力。本课题针对富营养化水体,采用微纳米气泡富氧技术与水生植物种植技术相结合的方式,根据不同的水质条件(水库、黑臭河道)调控相应的微纳米气泡的应用方式及条件,结合种植适宜的水生植物,促进植物根系发展提高冬季氮磷去除效率,从而实现水体的高效净化。通过对修复过程中的水质变化规律和微生物演替规律进行动态监测,观察不同微纳米气泡的实施条件对水生植物的生长和根际微生物变化的影响,探索微生物群落特征与水体修复效果的映射关系,用以指导该技术的推广和应用。 我国湖泊水库近在近20年来富营养化发展速度相当快,藻类爆发日趋频繁,已经严重影响到了饮用水水质。上海地处平原,河道水流缓慢,近年来“黑臭河道”现象日益严重,黑臭异味的根源是半封闭性水域的富营养化,外源污染物的过量输入超越了水体的环境容量。封闭性和半封闭性富营养化问题亟待解决,本项目拟开发的环保绿色高效的修复技术具有广阔的市场前景。
同济大学 2021-04-11
纳米光子学材料
一种全新的光热转换全介质材料(all-dielectric materials)即碲(Te)纳米颗粒,它不仅可以实现全太阳光谱吸收而且具有极高的光热转换效率。他们采用自己发展的液相激光熔蚀(laser ablation in liquids, LAL)技术制备出多晶碲纳米颗粒,粒径分布范围10到300纳米,并且发现由碲纳米颗粒自组装形成的吸收层具有强烈的宽谱吸收属性,在整个太阳光谱范围内的吸收率超过85%(紫外区接近100%)。在太阳光照射下,该吸收层的温度从29°C上升到85°C只需要100秒的时间。此外,通过将所制备碲纳米颗粒均匀分散到水中,在太阳光照射下水的蒸发速率提升了3倍,这种表现超越了所有已经报道的用于太阳能光热转换水蒸发的纳米光子学材料,包括等离激元(plasmonic)和全介质材料。
中山大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 146 147 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1