高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于5G云计算的新冠肺炎免疫检测与智能分析系统
四川大学抗击新冠肺炎疫情应急科研攻关相关项目组联合中国移动,发挥文、理、工、医多学科交叉融合优势,充分利用华西医学科研资源,在“5G医学转化服务平台”和“医学+信息”基础上,研发成功的基于5G云计算的新冠肺炎免疫检测与智能分析系统是全球首个运用新冠肺炎生物芯片,融合物联网、大数据、人工智能、云计算等信息技术的高科技产品,能在不同场景(机场/车站安检、大型活动安检、社区及个人自检等)对目标人群开展免疫检测,并通过人工智能技术进行分析,为新冠疫情的最终解决提供必要技术支撑。该系统实现了检测点的分散式布局与检测资源下沉,能避免集中检测的交叉感染,检测方便快捷,准确率高,数据自动上传国家指定平台。
四川大学 2021-04-11
一种可检测U的超稳定塑闪树脂及其制备方法和应用
本发明提供了一种可检测U的超稳定塑闪树脂及其制备方法和应用,属于塑闪树脂技术领域。本发明提供的可检测U的超稳定塑闪树脂,由塑料闪烁微球和接枝在所述塑料闪烁微球上的偕胺肟基组成;所述塑料闪烁微球含有羧基。本发明提供的可检测U的超稳定塑闪树脂中偕胺肟基和羧基为铀的吸附基团,其对铀具有大的分配比,能够有效吸附U,从而实现铀的分离;同时塑料闪烁微球能够接收U发出的α射线,并产生荧光,荧光被仪器的光电倍增管接收,从而达到稳定且高效地测量U的目的。
兰州大学 2021-01-12
一种适用于土遗址锚杆拉拔试验的检测装置及方法
本发明公开了实验装置技术领域的一种适用于土遗址锚杆拉拔试验的检测装置及方法,包括锚固组件、加载组件、数据采集处理组件和无损检测组件;锚固组件上安装有加载组件,锚固组件用于填充夯土模拟土遗迹,加载组件用于部分覆压夯土并提供多级拉力。本发明通过在锚固组件内填充夯土,采用土遗址坍塌原状夯土进行多层夯筑,进而最大限度模拟匹配土遗址的夯土层,在完成夯土层模拟后,通过加载组件对锚固组件加载多级拉拔力,在加载拉拔力的同时加载组件不会整体覆压在实验夯土上,拉拔过程中可以直接观测夯土层表面的破坏情况并通过数据采集处理组件进行数据测量,更加符合实际破坏情况。
兰州大学 2021-01-12
氧化石墨烯敏化半导体气敏材料及其特异性检测
氧化石墨烯具有独特的二维结构、丰富的表面官能团及P型半导体性质。通过氧化石墨烯与ZnO纳米片及SnO2纳米纤维进行复合,大幅度提升了其对丙酮、甲醛等特异性气体检测。其敏感性能的提升归因于氧化石墨烯和半导体材料二者的协同效应。相关研究解决了现有技术中的半导体气体传感器检测限和选择性较低的问题。
上海理工大学 2021-01-12
大华教育录播学生全景检测二合一双目摄像机
采用高性能200W像素1/2.8英寸CMOS图像传感器,低照度效果好,图像清晰度高 可输出200万(1920X1080)@25fps 支持H.265编码,压缩比高,超低码流 支持CVBS/SDI输出 最大红外监控距离30米 支持防闪烁,宽动态,3D降噪,强光抑制,背光补偿,数字水印,电子防抖,适用不同监控环境 支持H.264H,H.264,H264B,H.265,灵活编码,适用不同带宽和存储环境 支持遮挡报警,虚焦侦测,SD卡异常,网络异常,非法访问,动态检测,区域入侵,绊线入侵,物品遗留/消失,场景变更,徘徊检测,全局配置,快速移动,人员聚集,非法停车,音频异常侦测,人脸侦测,外部报警,起立检测,客流量统计,区域人数统计,热度图 支持报警2进2出,音频1进1出,RS485,BNC,128G SD卡,内置MIC 支持DC12V/POE供电方式,支持电源返送,最大电流1A,方便工程安装 支持IP67防护等级 类别 参数 参数值 外观 红外枪 传感器类型 1/2.8英寸CMOS 最大分辨率 200万 扫描方式 逐行扫描 电子快门 1/3s~1/100000s;可手动或自动调节 最低照度 0.002Lux(彩色模式);0.0002Lux(黑白模式);0Lux(红外灯开启) 信噪比 >56dB 最大补光距离 30米 补光灯数量 双灯 强光抑制 支持 外调焦 支持 镜头类型 定焦 镜头接口 M12 镜头焦距 3.6mm 镜头光圈 3.6mm:F1.8 视场角 3.6mm:水平:76°;垂直:46° 对角:80.5° 光圈控制 固定 近摄距 3.6mm:0.9mm 智能 支持 智能功能 支持遮挡报警,虚焦侦测,SD卡异常,网络异常,非法访问,动态检测,区域入侵,绊线入侵,物品遗留/消失,场景变更,徘徊检测,全局配置,快速移动,人员聚集,非法停车,音频异常侦测,人脸侦测,外部报警,起立检 测,客流量统计,区域人数统计,热度图,并且可以与报警联动;支持多种触发规则联动动作;支持目标过滤
浙江大华技术股份有限公司 2021-08-23
甲型流感病毒核酸检测试剂盒(PCR-荧光探针法)CFDA
临床症状 流感病毒包括甲、乙、丙三型,甲型最容易引起流行。临床表现为起病急、高热、肌痛、头痛伴有严重不适、干咳、咽喉痛或鼻炎,多数患者可在一到两周内恢复。对于儿童、老年人和有心肺疾病、糖尿病、癌症等慢性病患者,会造成严重后果,甚至死亡。 临床检测意义 1、 用于甲型流感病毒感染的早期诊断,为感染者选择最佳的治疗方案提供诊断依据; 2、 为流感样症状的患者提供实验诊断的依据,临床指导用药,避免滥用抗生素; 3、 减少患者的痛苦和经济负担。及时检测,能够有效防止扩散,减少疾病的传播; 4、 流行病学调查; 5、 有助于疫情爆发流行的控制。 产品特点 1、产品配备即开即用型核酸提取试剂。从核酸提取到获得结果,全程耗时少于2小时。 2、扩增曲线平台明显,斜率大 3、RT-PCR反应在同一管内连续进行,并能有效防止污染 4、无需多通道PCR仪,适用于多种荧光PCR仪器。 5、通过国家食品药品监督管理局生产质量管理体系考核,通过德国TÜV SÜD ISO 13485国际认证,确保生产、存储等环节中产品质量的严格控制。 6、RNase P作为本试剂盒的内部参照,对反应结果进行控制,避免假阴性。
广东华银医药科技有限公司 2021-10-28
非铅Cs2NaBiX6双钙钛矿纳米晶的高效光致发光动力学
近日,天津大学赵广久教授团队在钙钛矿材料的激发态化学机制研究方面取得突破性进展。相关研究成果发表在《Chemical Engineering Journal》(IF: 10.65)上。该团队首次合成了一种新型非铅双钙钛矿材料,并调控晶格畸变,调控了激发态载流子动力学,从而显著促进了光致发光量子产率的提升,对进一步的材料开发和应用有很强的指导意义。 研究背景 在过去的十年中,关于钙钛矿材料的开发和应用一直在光伏电池和发光领域得到了极大的发展。钙钛矿纳米晶体的与其块状材料相比,具有许多优势,例如钙钛矿纳米晶具有高的光致发光量子产率,颜色可调,同时易于大规模制备柔性器件。因此,卤化钙钛矿纳米晶体已成为研究人员的重要研究对象。 不幸的是,铅的毒性限制了卤化铅的进一步应用钙钛矿纳米晶体。最近报道了一些无铅钙钛矿纳米晶体的合成,但是其很难构造3D的钙钛矿结构,导致性能不佳。铅基钙钛矿的出色光学性能NC由独特的3D钙钛矿结构和ns2电子轨道,使其具有优异的电荷载流子行为。同时,几种双钙钛矿纳米晶体 3D结构取得了一些进展。但是有两个问题仍然存在。一种是开发更新颖的双纳米晶体来配合设备的应用;另一种是使用高精度光谱探索更深层次的激发态动力学。因此,更有效的合成技术改造和更深刻的载流子动力学研究是目前最有效的方法,这可提高无铅钙钛矿纳米晶体的应用前景。 研究基础 在前期的研究中,团队在钙钛矿光电材料设计与机理研究方面取得了一系列的原创性成果。前期我们团队通过离子掺杂诱导相转变,从非活性相转变为活性相,使得发光效率得到大幅度提高 (Angew. Chemie. Int. Ed. 2019, 58, 11642.) ; 在认识到晶型对发光调控的重要影响后,我们进一步地通过离子掺杂控制晶格变形程度进而调控发光峰的宽度,可以在实现高发光效率的同时随意控制发光峰宽度的窄化和拓宽(Chem. Eng. J. 2020, 125367; J. Lumin. 2020, 117045; 2D Mater. 2020, 7, 031008.);最后我们为了开发多手段实现构象调控,我们通过引入不同的左右旋手性基团,从而实现手性的传递和放大(J. Mater. Chem. C. 2020, 8, 5673. Phys. Chem. Chem. Phys. 2020, 22, 17299.)。 研究进展 在这项工作中,赵广久团队创新地开发了高效光致发光钠铋双钙钛矿Cs2NaBiX6(X = Cl,Br)纳米晶体。该团队通过离子掺杂控制晶格畸变,促进自陷态激子的捕获,实现了超快的热载流子弛豫;同时,DFT理论计算分析表明离子掺杂后的晶体的能带结构从间接带隙转变为直接带隙,促进了电子空穴的辐射复合;此外离子掺杂也降低了晶体的体相缺陷,减少了缺陷产生的非辐射复合。以上三者的贡献综合作用从而大幅度促进了光致发光产率的提升,结果离子掺杂后的双钙钛矿Cs2NaBiCl6 NCs可显示约16%的明亮宽带光致发光PLQY,高于迄今为止报告的单组分钙钛矿发光材料(2-10%)。我们的研究为未来的新材料的开发和应用提供了指导。
天津大学 2021-02-01
非铅Cs2NaBiX6双钙钛矿纳米晶的高效光致发光动力学
项目成果/简介:近日,天津大学赵广久教授团队在钙钛矿材料的激发态化学机制研究方面取得突破性进展。相关研究成果发表在《Chemical Engineering Journal》(IF: 10.65)上。该团队首次合成了一种新型非铅双钙钛矿材料,并调控晶格畸变,调控了激发态载流子动力学,从而显著促进了光致发光量子产率的提升,对进一步的材料开发和应用有很强的指导意义。 研究背景 在过去的十年中,关于钙钛矿材料的开发和应用一直在光伏电池和发光领域得到了极大的发展。钙钛矿纳米晶体的与其块状材料相比,具有许多优势,例如钙钛矿纳米晶具有高的光致发光量子产率,颜色可调,同时易于大规模制备柔性器件。因此,卤化钙钛矿纳米晶体已成为研究人员的重要研究对象。 不幸的是,铅的毒性限制了卤化铅的进一步应用钙钛矿纳米晶体。最近报道了一些无铅钙钛矿纳米晶体的合成,但是其很难构造3D的钙钛矿结构,导致性能不佳。铅基钙钛矿的出色光学性能NC由独特的3D钙钛矿结构和ns2电子轨道,使其具有优异的电荷载流子行为。同时,几种双钙钛矿纳米晶体 3D结构取得了一些进展。但是有两个问题仍然存在。一种是开发更新颖的双纳米晶体来配合设备的应用;另一种是使用高精度光谱探索更深层次的激发态动力学。因此,更有效的合成技术改造和更深刻的载流子动力学研究是目前最有效的方法,这可提高无铅钙钛矿纳米晶体的应用前景。 研究基础 在前期的研究中,团队在钙钛矿光电材料设计与机理研究方面取得了一系列的原创性成果。前期我们团队通过离子掺杂诱导相转变,从非活性相转变为活性相,使得发光效率得到大幅度提高 (Angew. Chemie. Int. Ed. 2019, 58, 11642.) ; 在认识到晶型对发光调控的重要影响后,我们进一步地通过离子掺杂控制晶格变形程度进而调控发光峰的宽度,可以在实现高发光效率的同时随意控制发光峰宽度的窄化和拓宽(Chem. Eng. J. 2020, 125367; J. Lumin. 2020, 117045; 2D Mater. 2020, 7, 031008.);最后我们为了开发多手段实现构象调控,我们通过引入不同的左右旋手性基团,从而实现手性的传递和放大(J. Mater. Chem. C. 2020, 8, 5673. Phys. Chem. Chem. Phys. 2020, 22, 17299.)。 研究进展 在这项工作中,赵广久团队创新地开发了高效光致发光钠铋双钙钛矿Cs2NaBiX6(X = Cl,Br)纳米晶体。该团队通过离子掺杂控制晶格畸变,促进自陷态激子的捕获,实现了超快的热载流子弛豫;同时,DFT理论计算分析表明离子掺杂后的晶体的能带结构从间接带隙转变为直接带隙,促进了电子空穴的辐射复合;此外离子掺杂也降低了晶体的体相缺陷,减少了缺陷产生的非辐射复合。以上三者的贡献综合作用从而大幅度促进了光致发光产率的提升,结果离子掺杂后的双钙钛矿Cs2NaBiCl6 NCs可显示约16%的明亮宽带光致发光PLQY,高于迄今为止报告的单组分钙钛矿发光材料(2-10%)。我们的研究为未来的新材料的开发和应用提供了指导。
天津大学 2021-04-11
一种制备胶体金标记的装载有PD药物的纳米脂质体的方法
本发明公开了一种制备胶体金标记的装载有PD药物的纳米脂质体的方法。将卵磷脂;胆固醇乙醇溶液在特定条件下分散到含胶体金和左旋多巴或金刚烷胺PD治疗药物的PBS溶液中,再将该溶液置于水浴中搅拌,乙醇挥发完全之后适当超声制备而成。所制备的胶体金标记的装载PD药物纳米脂质体粒径小、稳定性好,且有金定位标记,可增加PD药物的稳定性,提高生物利用率,同时减少药物用量,降低毒性。制备方法操作简便,反应易控制。产物可用于研究纳米左旋多巴或金刚烷胺脂质体的给药效果,改善左旋多巴或金刚烷胺的毒副作用,增强脑靶向性,还可作为一种探针用于研究纳米脂质体的脑代谢途径。
河北师范大学 2021-05-03
一种以废石膏为钙源制备纳米碳酸钙浆料的方法、产品及应用
本发明公开了一种以磷石膏为钙源制备纳米碳酸钙浆料的方法,向废石膏中加入水配制成石膏浆料,将氨水与石膏浆料搅拌混合,通入二氧化碳,并搅拌至废石膏中硫酸钙完全转化为纳米碳酸钙,过滤,将滤饼分散于水中得到纳米碳酸钙浆料。本发明方法简单易行,成本低廉,碳酸钙分解温度低。本发明还公开了上述方法制备的纳米碳酸钙浆料及其在制备氧化钙基二氧化碳吸附剂和用于反应吸附甲烷水蒸汽重整制氢的复合催化剂中的应用。制备得到的氧化钙基二氧化碳吸附剂循环稳定性好、吸附速率高,复合催化剂用于甲烷水蒸汽重整制氢,能制备得到纯度90%以上的氢气。
浙江大学 2021-04-11
首页 上一页 1 2
  • ...
  • 365 366 367
  • ...
  • 430 431 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1