高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
微生物诊断血清试剂盒及免疫磁珠分离试剂盒
利用现代分子生物学方法对传统抗血清制备技术进行改造,突破了过去抗血清生产经验为主造成的不确定性和不系统性,提高了抗血清制备的技术含量和生产效率。有效去除抗血清中的非特异性抗体,从而实现抗体制备的标准化和规模化生产,同时也降低了生产成本。 免疫磁珠分离技术的最突出的优点是特异性强,可以明显提高检测的灵敏性,缩短病原体的检测时间一至数天,并且可从复杂的样品中直接分离病原体,降低标本中抑制物的干扰,提高灵敏度。 已生产出3种诊断血清产品,包括“致病性大肠杆菌O抗原诊断血清试剂
南开大学 2021-04-14
一种改善磁致伸缩导波测距盲区的信号跟随方法及装置
本发明公开了一种改善磁致伸缩导波测距盲区的信号跟随方法及装置,涉及的导体由主导波丝和副导波丝通过连接导线相接而成,主导波丝上运行有激励电脉冲产生的电磁信号和导波信号,通过套于主导波丝上的线圈采集由该电磁信号和导波信号构成的合成信号;合成信号通过连接导线传输给副导波丝,传输过程中经过连接导线两端与主、副导波丝的相接点的反射,衰减掉合成信号中的导波信号,使得副导波丝上仅有电磁信号,通过套于副导波丝上的线圈采集电磁信号;对合成信号和电磁信号做差分运算以滤除电磁信号,差分运算结果即为盲区改善后的信号。本发明
华中科技大学 2021-04-14
一种无刷双馈电机独立发电系统的励磁控制装置
一种无刷双馈电机独立发电系统的励磁控制装置,属于无刷双 馈电机发电控制装置,克服现有的标量控制方法动态性能差以及双同 步旋转坐标系矢量控制方法复杂、成本高且效率低的缺陷。本发明包 括 PW 电压幅值控制器、PW 电压频率控制器、CW 电流矢量控制器、 LC 滤波器、转速计算器、CW 电流频率前馈量计算器、PW 电压锁相 环和 PW 电流变换器。本发明以无刷双馈电机的 CW 电流矢量控制器 为内环,以无刷双馈电机的 PW 电压幅值控制器和 PW 电压频率控制 器为外环,实现 PW 电压幅值和频率的独立
华中科技大学 2021-04-14
一种提高磁致伸缩导波检测灵敏度的装置及方法
本发明公开了一种提高磁致伸缩导波检测灵敏度的装置,以及 利用该装置提高磁致伸缩导波检测灵敏度的方法,中心处理器控制信 号发生器产生激励信号,通过功率放大器输入激励传感器,在待检测 区域激励产生超声导波并沿轴向传播;经信号增强元件的反射,超声 导波叠加增强后输入接收传感器,经信号预处理器输入到 A/D 转换器, 转换成数字信号输入中心处理器;中心处理器通过对数字信号的分析, 得出缺陷在待检测区域上的位置。本发明通过在传统的磁致伸缩导波 的检测装置中引入了信号增强元件,实现缺陷多次回波信号幅值增强,
华中科技大学 2021-04-14
一种基于聚磁桥路的钢管壁厚电磁超声测量装置
本发明公开了一种基于聚磁桥路的钢管壁厚电磁超声测量装置,包括穿过式磁化线圈、导磁元件、聚磁元件以及电磁超声检测线圈,其中磁化线圈用于将待检测钢管同心设置其中,由此在通电后产生沿其轴向分布的磁场;导磁元件呈板状结构对称设置在磁化线圈的外侧,用于使所产生的磁场沿着钢管法线方向分布;聚磁元件分别设置在各个所述导磁元件上,其下端贴近待检测钢管的外表面并保持间隙;电磁超声检测线圈安装在所述间隙中,用于在通以高频电流时执行对钢管壁厚的测量。本发明还公开了其他的构造形式。通过本发明,能够在待检测钢管的局部位置形成
华中科技大学 2021-04-14
一种直流偏磁多阶段递进式综合治理评估方法
本发明公开了一种直流偏磁多阶段递进式综合治理评估方法,包括:步骤 1,收集接地极和接地站 点的相关资料;步骤 2,从接地极向土壤注入小电流,获得接地站点的直流电流测试值;步骤 3,采用 直流电流仿真模型计算接地站点的直流电流仿真值;步骤 4,基于接地站点的直流电流测试值和直流电 流仿真值调整直流电流仿真模型,并进行第一阶段直流偏磁治理;步骤 5,从接地极向土壤注入逐步增 大的小电流,观察治理站治理设备动作情况,测量测试站直流电流,检查观察站的运行情况和噪声;步 骤 6,采用直流电流仿真模型计算测试站的直流电流仿真值,调整直流电流仿真模型;并进行下一阶段 直流偏磁治理。本发明计算简单、准确度高、效率高、切实可行。
武汉大学 2021-04-13
一种显示中高牌号无取向硅钢凝固枝晶组织的侵蚀剂及侵蚀方法
简介:本发明公开了一种显示中高牌号无取向硅钢凝固枝晶组织的侵蚀剂及侵蚀方法,属于金相检验分析技术领域。该侵蚀剂的成分及配比为:苦味酸1.5~2.0g,蒸馏水35~50ml,盐酸0.4~0.6ml,无水氯化铜0.3~0.5g,十二烷基苯磺酸钠0.5~1g。该侵蚀剂的侵蚀方法:先将已配好的侵蚀剂加热至沸腾状态,然后把已加工好的试样抛光面朝下,悬置于侵蚀剂中,侵蚀时间8~15s;侵蚀结束后先对侵蚀表面进行清水冲刷和棉球擦拭处理;然后将试样在抛光机1/2半径处抛光5~10s。本发明侵蚀时间短,操作程序简单;可快速观察到中高牌号无取向硅钢清晰的一次、二次凝固枝晶组织,从而能为优化其连铸工艺,增加铸坯等轴晶比例提供技术依据。  
安徽工业大学 2021-04-11
一种三相混晶二氧化钛材料的制备方法
本发明公开了一种三相混晶二氧化钛材料的制备方法。包括以下步骤:1)将钛前驱体加入碱溶液中,钛前驱体与碱溶液的体积比为1:10~25,持续搅拌1~5h;2)将步骤1)的沉淀用100~300mL水分2~6次洗涤,在40~160mL酸溶液中重新分散,搅拌10~45min;3)将步骤2)的混合物置于100~200mL具四氟内胆的水热反应釜中,150~200℃下水热反应12~36h;4)将步骤3)的沉淀水洗至上清液呈中性,干燥,得到三相混晶二氧化钛材料。本发明采用一步反应法制备晶型比例可控的三相混晶二氧化钛材料,具有方法简便、无需高温煅烧等优点。
浙江大学 2021-04-11
过共晶铝硅合金发动机缸套挤压铸造成形技术
1. 成果简介预制缸套然后铸造或装配是采用铝合金制造汽车发动机缸体的一种主要成形工艺。传统的缸套都是用铸铁制造,铸铁耐磨性好,但热导率较低,铝合金导热率是铸铁的 4 倍,采用铝合金制造缸套的优势是迅速将发动机燃烧产生的热量传递出去,避免机油焦化,从而显著提高发动机的升功率(功率密度)。过共晶 Al-Si 合金具有热膨胀系数小、耐磨性好、热导率高、高温性能好等特点,是制造发动机缸套的理想材料。图 1 挤压铸造件              图 2 机加工后零件                 图 3 初生硅和共晶硅分布 采用常规铸造方法成形过共晶铝硅合金,疏松倾向大,强度和韧性低,而且显微组织中初生硅的尺寸难以控制。挤压铸造是液态金属在较高外加压力(百兆帕)作用下凝固成形的一种先进铸造工艺,铸件在低速下充型,高压下凝固,内部致密,组织细小,并能通过热处理强化。 清华大学成功开发了过共晶铝硅合金缸套挤压铸造成形技术,具有非常好的发展潜力和产业化应用前景。2 应用说明采用铝合金制造发动机缸套甚至全铝发动机缸体是国外主要汽车企业开发高性能发动机的重要技术之一。采用喷射沉积加挤压或锻造工艺已有相关产品,但由于工序多、流程长造成生产率低、成本高。清华大学开发的过共晶铝硅合金缸套挤压铸造成形技术具有短流程、近净成形、优质、高效、节能等优点,目前正在与汽车发动机制造企业合作,进行技术评价与应用。 申请国家发明专利 1 项。3 效益分析缸套作为汽车发动机生产中的一个重要配件,其用量大,产品和技术相对独立,原材料充足,设备投资小,适于中小企业给发动机厂配套,特别是适合于已经在给发动机厂配套铝合金活塞等部件的企业发展这一技术和产品,易于在现有客户渠道基础上丰富产品种类,同时较高的技术含量可以避免被简单模仿和恶性竞争。
清华大学 2021-04-13
过共晶铝硅合金发动机缸套挤压铸造成形技术
1. 成果简介预制缸套然后铸造或装配是采用铝合金制造汽车发动机缸体的一种主要成形工艺。传统的缸套都是用铸铁制造,铸铁耐磨性好,但热导率较低,铝合金导热率是铸铁的 4 倍,采用铝合金制造缸套的优势是迅速将发动机燃烧产生的热量传递出去,避免机油焦化,从而显著提高发动机的升功率(功率密度)。过共晶 Al-Si 合金具有热膨胀系数小、耐磨性好、热导率高、高温性能好等特点,是制造发动机缸套的理想材料。2 应用说明采用铝合金制造发动机缸套甚至全铝发动机缸体是国外主要汽车企业开发高性能发动机的重要技术之一。采用喷射沉积加挤压或锻造工艺已有相关产品,但由于工序多、流程长造成生产率低、成本高。清华大学开发的过共晶铝硅合金缸套挤压铸造成形技术具有短流程、近净成形、优质、高效、节能等优点,目前正在与汽车发动机制造企业合作,进行技术评价与应用。 申请国家发明专利 1 项。3 效益分析缸套作为汽车发动机生产中的一个重要配件,其用量大,产品和技术相对独立,原材料充足,设备投资小,适于中小企业给发动机厂配套,特别是适合于已经在给发动机厂配套铝合金活塞等部件的企业发展这一技术和产品,易于在现有客户渠道基础上丰富产品种类,同时较高的技术含量可以避免被简单模仿和恶性竞争。4 合作方式技术转让或合作开发。5 所属行业领域先进制造。
清华大学 2021-04-13
首页 上一页 1 2
  • ...
  • 69 70 71
  • ...
  • 140 141 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1