高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米氧化锌的制备方法
本发明所述的纳米氧化锌粉的制备方法如下:将可溶性锌盐、氢氧化钾或氢氧化钠、 硼氢化钾或硼氢化钠按摩尔比为 1:0.66:(1~3)加入装有溶剂 N,N-二甲基甲酰胺的 容器中,搅拌,在温度 100~200O C 下保温 2~48 小时,然后冷却至室温,清洗生成物至 pH 值呈中性,最后用无水乙醇清洗、过滤、干燥即可。采用本发明所述的纳米氧化锌粉 的制备方法得到的氧化锌产率接近 100%,纯度也很高,粒度在几纳米到几十纳米之间, 且方法简单,是制备超细纳米氧化锌高端产品的优良工艺方法。
同济大学 2021-04-11
用超细APT制备纳米钨粉
1.项目简介:《用超细APT制备纳米钨粉的研究》由我校余世鑫教授主持与江西省崇义章源钨制品有限公司联合研究,并由该公司工业试生产成功。该项目经过课题组人员的共同努力和卓有成效的研究,取得了重大突破。2003年11月28日江西省科技厅组织专家鉴定组对该项目进行了鉴定。2.技术特点:本项目采用精细化工技术,依据相转移合成法的原理,采用独特的离子交换高峰液的处理技术、固液分离技术和结晶晶形控制技术,生产出超细颗粒仲钨酸铵(APT,费氏粒度 1~10μm)。然后在通用的回转管炉煅烧和四管炉还原,采用露点-70℃的高纯氢气和粉末钝化技术,制得纳米钨粉。其生产表明,与等离子法、流态化还原法等相比,采用该技术生产纳米钨粉具有设备投资少、成本低、规模生产易控制、重现性好的特点。易于实现工业化生产。该项目采用的工艺技术独特、新颖、可行,属国内首创。
武汉工程大学 2021-04-11
纳米金属粉体连续制备技术
纳米金属粉体材料广泛用于催化剂、润滑剂、建筑材料、陶瓷材料、气敏材料、绝缘材料、纺织材料、发光材料、木材、灭火剂、生物医学材料等,在冶金、机械、化工、电子、国防、核技术、航空航天等领域具有极其重要的潜在应用价值。金属纳米粉体制备技术是纳米金属粉体材料研究、开发和应用的关键。本技术依托南京工业大学粉体研究所,已开发出三代年产1000公斤级高性能、高产率直流电弧等离子体蒸发金属纳米粉体连续制备产业化生产线,并实现了平均粒度在15~300nm的金属Cu、Ni、Fe、Ag、Sn、Bi、Zn、Co、不锈钢及高均匀混合性Cu-Ni-Sn等金属粉体材料的产业化生产。所制备的纳米金属粉体纯度高,可满足不同行业特别是电子行业对高纯度纳米金属粉体的需求;可满足多系列、多品种纳米金属粉体的生产,易控制粉体的粒径以及粒度分布;有利于降低粉体粒度分布范围,减小粒度;易收集,包装,且能在后续环节中保证粉体的高纯度。该生产线具有能量利用率高,制备成本低,产率高;可靠性高,易维护;原材料可适应性强,即可采用不规则金属块体,也可采用粉体;产品均一性好等优点。目前,该技术已成功转让给相关企业,并在同行业具有强的竞争优势。技术优势(特点、指标等) 生产线真空度高,极限真空度可达5×10-4 Pa,采用三枪结构,为高均匀性复合金属纳米粉体、合金纳米粉体和薄壳修饰形纳米粉体的制备奠定了基础;采用最新的等离子体电源组合技术,可有效解决国内现行产业化生产线依赖使用国外进口大功率等离子体电源的现状;根据不同金属特点,在一条生产线上,采用不同结构粒子控制器,可有效解决多品种金属纳米粉体的生产问题;引入纳米粉体分级系统,可进一步降低生产金属纳米粉体的粒度分布范围,提高产品质量;所研制的生产线已考虑到金属纳米粉体的钝化、真空储存和设备与后续产品生产设备的连接等问题;采用复合蒸发和特殊蒸发坩埚技术,可进一步提高设备能量利用率,降低制备成本;设备主要操作由计算机控制,易于操作,稳定性高。与国内现有技术相比,在粒度相同情况下,铜粉产率可提高1.5倍,镍粉产率可提高2倍,银粉产率可提高5倍,铁粉产率可提高2~5倍。基本解决了现有纳米金属粉气相法生产中存在的产率低、成本高、纯净度低等问题。中国颗粒学会鉴定结果认为该技术达到国际先进、国内领先水平。
南京工业大学 2021-04-13
纳米乳液的低能乳化法制备
纳米乳液是液滴直径为纳米级的乳液,当纳米乳液粒径小于 100 nm 时,外 观通常为透明或半透明的液体,能够在相对较长的时间内不发生分层,广泛应 用于药物、化妆品、食品等领域。纳米乳液是热力学不稳定体系,不能自发形 成,因此在纳米乳液的制备过程中需要能量的输入。根据输入能量的强度,可 以分为高能乳化法和低能乳化法两类。高能乳化法是指用高速搅拌、高压均质 或超声等方法提供大量的能量,通过拉伸和碰撞使大液滴破裂成小液滴,从而 形成纳米乳液。低能乳化法是利用体系组分释放的化学能制备纳米乳液的方法, 包括在固定温度下改变组成的 PIC 法(phase inversion composition method)、 在固定组成下改变温度的 PIT 法(phase inversion temperature method)、微乳液 稀释法和自乳化法等。由于能量输入少,仪器装置简单,成本低廉的优点,低 能乳化法的研究近年来引起了广泛关注。
山东大学 2021-04-13
纳米磁性液体的制备与应用
纳米磁性液体(magnetic fluid,简称MF)是一种将纳米尺寸的Fe3O4磁性粒子分散在液态基础液中构成的一种新型液体磁性材料,它既具有普通磁性材料的磁性,又具有一般液体的流动性,被广泛应用于航空航天器和其它工业领域的各种设备中。用纳米磁性液体开发的旋转轴密封轴承,可实现自润滑、高转速(10000r/min以上)、无磨损、零泄漏、长寿命的极佳效果,大大提高了设备工作的可靠性和使用寿命。 我单位利用应用化学方面的专业优势,从上世纪八十年代就开始了磁性液体的研究,现已研制出了具有多种型号,性能优异的纳米磁性液体(见下表),其中BH-2、BH-3在旋转轴动密封的实际应用中取得了良好的效果。
北京航空航天大学 2021-04-13
绿色高效制备纳米纤维素
纳米纤维素材料是以棉、木桨生物质经过化学或机械等处理技术得到的尺寸在纳米级的纤维素产品。主要分为纳米纤维素晶体CNWs、纳米纤维素纤维CNFs两大类。由于 CNWs、CNFs 二者均具有结晶度高、可降解、高强度、极低的热膨胀系数等优势,可被广泛用于生物医学、汽车制造、航空航天、3D 打印、建 筑、军工特殊材料、电子产品、化妆品、涂料、油漆、食品、 造纸、复合材料和聚合物增强等领域。 本团队研制了一种新型复合纳米化技术,实现纳米纤维素的量化制备,解决量化制备过程中的酸化、均质化、液体回收与净化循环利用技术,该技术国内外均无文献报道。
北京理工大学 2023-05-09
绿色高效制备纳米纤维素
纳米纤维素材料是以棉、木桨生物质经过化学或机械等处理技术得到的尺寸在纳米级的纤维素产品。主要分为纳米纤维素晶体CNWs、纳米纤维素纤维CNFs两大类。由于 CNWs、CNFs 二者均具有结晶度高、可降解、高强度、极低的热膨胀系数等优势,可被广泛用于生物医学、汽车制造、航空航天、3D 打印、建 筑、军工特殊材料、电子产品、化妆品、涂料、油漆、食品、 造纸、复合材料和聚合物增强等领域。 本团队研制了一种新型复合纳米化技术,实现纳米纤维素的量化制备,解决量化制备过程中的酸化、均质化、液体回收与净化循环利用技术,该技术国内外均无文献报道。
北京理工大学 2022-12-16
纳米乳液的低能乳化法制备
纳米乳液是液滴直径为纳米级的乳液,当纳米乳液粒径小于100 nm时,外观通常为透明或半透明的液体,能够在相对较长的时间内不发生分层,广泛应用于药物、化妆品、食品等领域。纳米乳液是热力学不稳定体系,不能自发形成,因此在纳米乳液的制备过程中需要能量的输入。根据输入能量的强度,可以分为高能乳化法和低能乳化法两类。高能乳化法是指用高速搅拌、高压均质或超声等方法提供大量的能量,通过拉伸和碰撞使大液滴破裂成小液滴,从而形成纳米乳液。低能乳化法是利用体系组分释放的化学能制备纳米乳液的方法,包括在固定温度下改变组
山东大学 2021-04-14
光敏材料及制备方法
成果与项目的背景及主要用途: 作为光导体的核心部件-电荷产生层材料,已由最早的无机材料逐步被有机 光导材料取,有机材料加工成型性能优良;品种多;透光性好;无公害污染;开 发周期短等。目前常用的电荷产生材料主要有酞菁化合物、花类化合物、方酸类 化合物、偶氮类化合物等其中应用最多的是酞菁类化合物。 技术原理与工艺流程简介: 将酞菁氧钦粗品溶于-5℃~5℃的浓硫酸中,然后将其以一定速度滴加到不断 搅拌的转型溶剂中,温度为加料温度;滴加完毕后,调节保温温度,继续搅拌 1-72h,得蓝色乳浊液,静置,向其中加入低碳醇,待分层后分液,用去离子水 反复萃取直至水相呈中性,分出有机相;再向其中加入沉淀剂,静置,使 TIOPC 纳米粒子沉降;将上层清液倾去,抽滤,用甲醇洗涤滤饼,然后用去离子水打浆、 冷冻干燥得加料温度对应的晶型的酞菁氧钦纳米粒子。 技术水平及专利与获奖情况: 发明专利两项,技术水平国内领先 应用前景分析及效益预测: 多晶型光敏性 TIOPC 纳米粒子的优点是粒径小,很大程度上简化多种晶型 TIOPC 制备工艺,采用分液,萃取等技术使离子杂质更易被除去,简化现存工 110天津大学科技成果选编 艺技术中繁琐的洗涤过程,与 PVB 树脂具有良好的相容性,适合作为制备有机光 导体的电荷产生材料,并且使用该材料制得的光导体灵敏度高,暗衰低,残余电 位低,具有良好的光导性能。 应用领域: 光电转换材料 合作方式及条件: 合作开发与技术转让
天津大学 2021-04-11
超细材料的制备
本项目主要包括超细高纯氧化铝粉体及生物医用氧化锆纳米粉体,以纳米 级、亚微米级的无机盐、过渡金属离子为中间原料制备,具有耐候性好、耐酸 碱腐蚀、投资规模小、附加值高等优点,应用广泛,能够替代国外进口产品。 本项目是通过溶胶凝胶与水热法相结合的技术手段,使易水解的金属无机盐或 金属醇盐化合物在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化, 再经干燥、烧结等后处理得到超细粉末,避免了微粒的过度生长以及在液相中 的团聚,可获得粒径分布很窄纳米级。
山东大学 2021-04-13
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 460 461 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1